61A Lecture 8

Wednesday, September 17

Announcements

*Project 1 is due Thursday 9/18 @ 11:59pm; Early bonus point for submitting on Wednesday!
Project Party in Stern Main Lounge (Stern Hall in Unit 4) 8pm-10pm on Wednesday 9/17
*Midterm 1 is on Monday 9/22 from 7pm to 9pm
2 review sessions on Saturday 9/20 3pm-4:30pm and 4:30pm-6pm in 1 Pimentel
HKN review session moved to Sunday 9/21, time/location TBD
Includes topics up to and including this lecture
Closed book/note exam, except for one page of hand-written notes and a study guide
Cannot attend? Fill out the conflict form by Wednesday 9/17 @ Spm!

<Optional Hog strategy contest ends Wednesday 10/1 @ 11:59pm

Hog Contest Rules

*Up to two people submit one entry;
Max of one entry per person

*Your score is the number of entries
against which you win more than 50%
of the time

* All strategies must be deterministic,
pure functions of the current player
scores

* All winning entries will receive 2
points of extra credit

* The real prize: honor and glory

Fall 2011 Winners

Kaylee Mann

Yan Duan & Ziming Li

Brian Prike & Zhenghao Qian
Parker Schuh & Robert Chatham

Fall 2012 Winners

Chenyang Yuan
Joseph Hui

Fall 2013 Winners
Paul Bramsen

Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2014 Winners
YOUR NAME COULD BE HERE... FOREVER!

Order of Recursive Calls

The Cascade Function

def cascade(n):
if n < 10:
print(n)
else:
print(n)
cascade(n//10)
print(n) P

cascade(123)

Program output:
123

12 «<--
1 <«---

Global frame

: cascade [parent=Global]

: cascade [parent=Global]

(Demo)

func cascade(n) [parent=Global]

cascade

: cascade [parent=Global]

n 123

-Each cascade frame is from a
n 12 different call to cascade.

Rel™ None -Until the Return value appears,
that call has not completed.

<Any statement can appear before

a1 or after the recursive call.

Return
u

None
value

Interactive Diagram

Two Definitions of Cascade

(Demo)
def cascade(n): def cascade(n):

if n < 10: print(n)
print(n) if n >= 10:

else: cascade(n//10)
print(n) print(n)
cascade(n//10)
print(n)

If two implementations are equally clear, then shorter is usually better
In this case, the longer implementation is more clear (at least to me)
- When learning to write recursive functions, put the base cases first
Both are recursive functions, even though only the first has typical structure

Example: Inverse Cascade

Inverse Cascade

Write a function that prints an inverse cascade:

1 def inverse_cascade(n):
12 grow(r(l))

print(n
1%34 shrink(n)
%%3 def f_then_g(f, g, n):

if n:
1 f(n)

g(n)
grow = lambda n: f_then_g()

shrink = lambda n: f_then_g()

Tree Recursion

Tree-shaped processes arise whenever executing the body of a recursive function makes more
than one call to that function.

n: 01,2, 3 4,56, 7, 8 ey 35

. fib(n): o, 1, 1, 2, 3, 5, 8, 13, 21, ey 9,227,465
Tree Recursion

def fib(n)
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n-2) + £ib(n-1)

A Tree-Recursive Process Repetition in Tree-Recursive Computation
The computational process of fib evolves into a tree structure This process is highly repetitive; fib is called on the same argument multiple times.
fib(5)
) ib(3) fib(4)
fib(3) / AN
/ fib(1) ib(2) \
fib(1 fib(2
‘() p @ \ f»b(gj f}(l) fib(2) fib(3)
1l 1
1 fib(e) ! / N / N
fib(0) fib(1) fib(1) fib(2)
0 / N
0 1 1 fib(0) fib(1)
fib(@) fib(1) |
| i) 1
(Demo) We can speed up this computation dramatically in a few weeks by remembering results.

Counting Partitions

The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order.

count_partitions(6, 4)

. " 2+4=6
Example: Counting Partitions
1+1+4=6
3+3=6
1+2+3=6
1+1+1+3=6
2+2+2=6
1+1+2+2=6
1+1+1+1+2=6
1+1+1+1+1+1=6
Counting Partitions Counting Partitions
The number of partitions of a positive integer n, using parts up to size m, is the number The number of partitions of a positive integer n, using parts up to size m, is the number
of ways in which n can be expressed as the sum of positive integer parts up to m in of ways in which n can be expressed as the sum of positive integer parts up to m in
increasing order. increasing order.
count_partitions(6, 4)
<Recursive decomposition: finding <Recursive decomposition: finding def gount_partitiuns(n, m):
simpler instances of the problem. simpler instances of the problem. if n :: 0: "
return
<Explore two possibilities: 'r' <Explore two possibilities: elif n < 0:
*Use at least one 4 : ‘Use at least one 4 _return @
elif m == 0:
<Don't use any 4 +Don't use any 4 return @
+Solve two simpler problems: -Solve two simpler problems: else:
- count_partitions(2, 4) - - count_partitions(2, 4) » with m = count_partitions(n-m, m)
» without_m = count_partitions(n, m-1)
- count_partitions(6, 3) - - count_partitions(6, 3) return with_m + without_m
<Tree recursion often involves -Tree recursion often involves
exploring different choices. exploring different choices. (Demo)
Interactive Diagram

