61A Lecture 10

Wednesday, September 24

Announcements

+Homework 3 due Wednesday 10/1 @ 11:59pm
Homework party on Monday evening, details TBD
-Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm
< Composition scores for Project 1 will mostly be assigned this week
3/3 is unusual on the first project
You can gain back composition points you lost on Project 1 by revising it (in November)
-Midterm 1 should be graded by Friday
Solutions to Midterm 1 will be posted after lecture
-Guerrilla section this Saturday 12-2 and 2:30-5 on recursion (Please RSVP on Piazza!)

«Practical Programming now meets Wednesdays 6:30-8pm in 405 Soda

Data

Data Types

Every value has a type
(demo)
Properties of native data types:
1. There are primitive expressions that evaluate to values of these types.
2. There are built-in functions, operators, and methods to manipulate those values.

Numeric Types in Python:

>>> type(2) { Represents integers exactly]

<class ‘'int'>

>>> type(1.5)

<class 'float'>< Represents real numbers approximately }

>>> type(1+1j)
<class 'complex'>

Objects

(Demo)

*Objects represent information.

* They consist of data and behavior, bundled together to create abstractions.

e Objects can represent things, but also properties, interactions, & processes.

* A type of object is called a class; classes are first-class values in Python.

*Object-oriented programming:

* A metaphor for organizing large programs

* Special syntax that can improve the composition of programs
e In Python, every value is an object.

* All objects have attributes.

* A lot of data manipulation happens through object methods.

* Functions do one thing; objects do many related things.

Data Abstraction

Data Abstraction

«Compound objects combine objects together

A date: a year, a month, and a day

A geographic position: latitude and longitude
<An abstract data type lets us manipulate compound objects as units
«Isolate two parts of any program that uses data:

How data are represented (as parts)

How data are manipulated (as units)

+Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

sJauwwelboud

sJaauwwedboayg

v

3eau9

Rational Numbers
numerator
denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

‘raticnal(n, d)i returns a rational number x
einumer(x); returns the numerator of x
Selectors >

edenom(x): returns the denominator of x

Rational Number Arithmetic Rational Number Arithmetic Implementation

def mul_rational(x, y): _
return{ rational(numer(x) * numer(y),

denom(x) * idenom(y))

def add_rational(x, y):
nx, dx = numer(x), denom(x)
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

2 5 10

3 3 21 nxkdy + nykdx

nxkdy + nykdx

°

def print_rational(x):
2 5 10 dx*dy print(numer(x), '/', denom(x)) dxxdy

def rationals_are_equal(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

* rational(n, d) returns a rational number x | | These functions implement an
e numer(x) returns the numerator of x | abstract data type
e denom(x) returns the denominator of x i for rational numbers

Example General Form

Representing Pairs Using Lists

>>> pair = [1, 2] A list literal:
T>> p?lr Comma-separated expressions in brackets
1, 2
>>> X, y = pair "Unpacking" a list
X
. s>y
Pairs 2
>>> pair[0] Element selection using the selection operator
>>> pair[1]
>>> from operator import getitem Element selection function
>>> getitem(pair, 0)

>>> getitem(pair, 1)

More lists next lecture

Representing Rational Numbers Reducing to Lowest Terms

def rational(n, d): Example:
"""Construct a rational number that represents N/D."""
return {[n, d]}

15 1/3 5 25 1/25 1
r(x): » * = * =
eturn the numerator of rational number X. 6 1/3 2 50 1/25 2
return x[0]

def denom(x):

;;:Eigg;?i}he denominator of rational number X.""" from fractions importgggd' S ——————

def rational(n, d):
[Select item from a list] """Construct a rational number x that represents n/d."""
g = gcd(n, d)

t [n//79, d//9]
(Demo) return In//g, 9

Abstraction Barriers

Parts of the program that Using

Use rational numbers add_rational, mul_rational

whole data values

to perform computation rationals_are_equal, print_rational
Abstraction Barriers
Create rationals or implement numerators and .
rational operations denominators rational, numer, denom

Implement selectors and

A two-element lists list literals and element selection
constructor for rationals

Implementation of lists

Violating Abstraction Barriers

Does not use ;
Twice!

constructors

add_rational([1, 2], [1, 4])

def divide_rational(x, y):
return [{:x'[?)]‘ * y[1]1, x[1] % y[0] 1

:
And no constructor!

Data Representations

What is Data?

*We need to guarantee that constructor and selector functions work
together to specify the right behavior.

“Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d.

<An abstract data type is some collection of selectors and
constructors, together with some behavior condition(s).

< If behavior conditions are met, then the representation is valid.

You can recognize abstract data types by their behavior, not by their class

Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then
e select(p, @) returns x, and

*select(p, 1) returns y.

Together, selectors are the inverse of the constructor

Not true for rational numbers

Generally true of container types. because of GCD

(Demo)

Functional Pair Implementation

. i point = pair(2, 4)
def pair(x, y): i select(point, 1)
"""Return a function that represents a pair."""

idef get (index) : Gloval trame _—>func pair(x, y) [parent=Glovall
if index == 0: - - ol
return x This function = g
elif index == 1: represents a pair GO
..returny i f1: patr (parent=Global)
return get x[2
i y 4
get
Constructor is a o
higher-order function
f25 setect [parent=Glopat]

de

Ly

select(p, i): 1
""UReturn._the element at index i of pair p.""" R |+
return{ p(i)

3: get [parent=f1
Selector defers to index 1
the object itself Retum |,

Interactive Diagram

——>func select(p, 1) [parent=Globall

>func get(index) (parent=f1]

Using a Functionally Implemented Pair

>>> p = pair(1, 2)
As long as we do not violate
>>> select(p, 0) the abstraction barrier,
1 we don't need to know that
pairs are just functions

>>> select(p, 1)
2

If a pair p was constructed from elements x and y, then
e select(p, @) returns x, and

e select(p, 1) returns y.

This pair representation is valid!

