
61A Lecture 10

Wednesday, September 24

Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm

!Homework party on Monday evening, details TBD

• Optional Hog Contest entries due Wednesday 10/1 @ 11:59pm

• Composition scores for Project 1 will mostly be assigned this week

!3/3 is unusual on the first project

!You can gain back composition points you lost on Project 1 by revising it (in November)

• Midterm 1 should be graded by Friday

!Solutions to Midterm 1 will be posted after lecture

• Guerrilla section this Saturday 12-2 and 2:30-5 on recursion (Please RSVP on Piazza!)

• Practical Programming now meets Wednesdays 6:30-8pm in 405 Soda

2

Data

Data Types

Represents integers exactly

Represents real numbers approximately

Every value has a type
!

(demo)

Properties of native data types:

1. There are primitive expressions that evaluate to values of these types.

2. There are built-in functions, operators, and methods to manipulate those values.

4

Numeric Types in Python:
!
>>> type(2)
<class 'int'>
!
>>> type(1.5)
<class 'float'>
!
>>> type(1+1j)
<class 'complex'>

Objects

•Objects represent information.
•They consist of data and behavior, bundled together to create abstractions.
•Objects can represent things, but also properties, interactions, & processes.
•A type of object is called a class; classes are first-class values in Python.
•Object-oriented programming:
•A metaphor for organizing large programs
•Special syntax that can improve the composition of programs

•In Python, every value is an object.
• All objects have attributes.
• A lot of data manipulation happens through object methods.
• Functions do one thing; objects do many related things.

5

(Demo)

Data Abstraction

Data Abstraction

• Compound objects combine objects together

!A date: a year, a month, and a day

!A geographic position: latitude and longitude

• An abstract data type lets us manipulate compound objects as units

• Isolate two parts of any program that uses data:

!How data are represented (as parts)

!How data are manipulated (as units)

• Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use

All
Programmers

Great
Programmers

7

Rational Numbers

Exact representation of fractions

A pair of integers

As soon as division occurs, the exact representation may be lost!

Assume we can compose and decompose rational numbers:

numerator

denominator

•rational(n, d) returns a rational number x

•numer(x) returns the numerator of x

•denom(x) returns the denominator of x

Constructor

Selectors

8

Rational Number Arithmetic

3

2

3

5
*

9

10
=

3

2

3

5
+

21

10
=

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

9

General FormExample

def mul_rational(x, y):
 return rational(numer(x) * numer(y),
 denom(x) * denom(y))

Rational Number Arithmetic Implementation

•rational(n, d) returns a rational number x
•numer(x) returns the numerator of x
•denom(x) returns the denominator of x

Constructor

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)
!
def print_rational(x):
 print(numer(x), '/', denom(x))
!
def rationals_are_equal(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

10

SelectorsSelectors

These functions implement an
abstract data type

for rational numbers

nx

dx

ny

dy
*

nx*ny

dx*dy
=

nx

dx

ny

dy
+

nx*dy + ny*dx

dx*dy
=

Pairs

Representing Pairs Using Lists

A list literal:
Comma-separated expressions in brackets

"Unpacking" a list

Element selection using the selection operator

More lists next lecture
12

>>> pair = [1, 2]
>>> pair
[1, 2]
!
>>> x, y = pair
>>> x
1
>>> y
2
!
>>> pair[0]
1
>>> pair[1]
2
!
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

Element selection function

def rational(n, d):
 """Construct a rational number that represents N/D."""
 return [n, d]

Representing Rational Numbers

Construct a list

Select item from a list

def numer(x):
 """Return the numerator of rational number X."""
 return x[0]
!
def denom(x):
 """Return the denominator of rational number X."""
 return x[1]

13

(Demo)

from fractions import gcd
!
def rational(n, d):
 """Construct a rational number x that represents n/d."""
 g = gcd(n, d)
 return [n//g, d//g]

Reducing to Lowest Terms

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

14

Abstraction Barriers

Abstraction Barriers

16

Parts of the program that... Treat rationals as... Using...

Use rational numbers  
to perform computation whole data values add_rational, mul_rational

rationals_are_equal, print_rational

Create rationals or implement
rational operations

numerators and
denominators rational, numer, denom

Implement selectors and
constructor for rationals two-element lists list literals and element selection

Implementation of lists

Does not use
constructors Twice!

No selectors!

And no constructor!

Violating Abstraction Barriers

add_rational([1, 2], [1, 4])
!

def divide_rational(x, y):
 return [x[0] * y[1], x[1] * y[0]]

17

Data Representations

What is Data?

• We need to guarantee that constructor and selector functions work
together to specify the right behavior.

• Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d.

• An abstract data type is some collection of selectors and
constructors, together with some behavior condition(s).

• If behavior conditions are met, then the representation is valid.

You can recognize abstract data types by their behavior, not by their class

19

Behavior Conditions of a Pair

To implement our rational number abstract data type, we used a two-element list.

But is that the only way to make pairs of values? No!

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

•select(p, 0) returns x, and

•select(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types.
Not true for rational numbers

because of GCD

20

(Demo)

def pair(x, y):
 """Return a function that represents a pair."""
 def get(index):
 if index == 0:
 return x
 elif index == 1:
 return y
 return get

def select(p, i):
 """Return the element at index i of pair p."""
 return p(i)

This function
represents a pair

Functional Pair Implementation

Constructor is a
higher-order function

Selector defers to
the object itself

21

point = pair(2, 4)
select(point, 1)

Interactive Diagram

Using a Functionally Implemented Pair

>>> p = pair(1, 2)
!
>>> select(p, 0)
1
!
>>> select(p, 1)
2

If a pair p was constructed from elements x and y, then

•select(p, 0) returns x, and

•select(p, 1) returns y.

This pair representation is valid!

As long as we do not violate
the abstraction barrier,

we don't need to know that
pairs are just functions

22

