
CS 61A Lecture 12

Monday, September 29

Announcements

• Homework 3 due Wednesday 10/1 @ 11:59pm

!Homework Party on Monday 9/29, time and place TBD

• Optional Hog Contest due Wednesday 10/1 @ 11:59pm

• Project 2 due Thursday 10/9 @ 11:59pm

2

Box-and-Pointer Notation

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if:

•The result of combination can itself be combined using the same method.

•Closure is the key to power in any means of combination because it permits
us to create hierarchical structures.

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on.

Lists can contain lists as elements

4

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

5Interactive Diagram

Trees

Trees are Nested Sequences

A tree is either a single value called a leaf or a sequence of trees

Typically, some type restriction is placed on the leaves. E.g., a tree of numbers:

7

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case often makes a recursive call on each branch and then aggregates

8

(Demo)

def count_leaves(tree):

 """Count the leaves of a tree."""

 if is_leaf(tree):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in tree]

 return sum(branch_counts)

Discussion Question

Complete the definition of flatten, which takes a tree and returns a list of its leaves

Hint: If you sum a sequence of lists, you get 1 list containing the elements of those lists

9

 sum([flatten(b) for b in tree], [])

def flatten(tree):
 """Return a list containing the leaves of tree.
!
 >>> tree = [[1, [2], 3, []], [[4], [5, 6]], 7]
 >>> flatten(tree)
 [1, 2, 3, 4, 5, 6, 7]
 """
 if is_leaf(tree):
 return [tree]
 else:
 return ___________________________________
!
def is_leaf(tree):
 return type(tree) != list

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

Sequence Operations

Membership & Slicing

>>> digits = [1, 8, 2, 8]
>>> 2 in digits
True
>>> 1828 not in digits
True

>>> digits[0:2]
[1, 8]
>>> digits[1:]
[8, 2, 8]

Python sequences have operators for membership and slicing

Membership.

Slicing.

11

Slicing creates a new object

Binary Trees

Trees may also have restrictions on their structure

A binary tree is either a leaf or a sequence containing at most two binary trees

The process of transforming a tree into a binary tree is called binarization

12

def right_binarize(tree):
 """Construct a right-branching binary tree.
!

 >>> right_binarize([1, 2, 3, 4, 5, 6, 7])
 [1, [2, [3, [4, [5, [6, 7]]]]]]
 """
 if is_leaf(tree):
 return tree
 if len(tree) > 2:
 tree = [tree[0], tree[1:]]
 return [right_binarize(b) for b in tree] (Demo)

All but the first branch are
grouped into a new branch

Strings

Strings are an Abstraction

Representing data:

'200' '1.2e-5' 'False' '(1, 2)'

Representing language:

"""And, as imagination bodies forth
The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing
A local habitation and a name.
"""

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

(Demo)

14

String Literals Have Three Forms

>>> 'I am string!'
'I am string!'
!
>>> "I've got an apostrophe"
"I've got an apostrophe"
!
>>> '您好'
'您好'

>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, Readability counts.\nRead more: import this.'

"Line feed" character
represents a new line

A backslash "escapes" the
following character

Single-quoted and double-quoted
strings are equivalent

15

Strings are Sequences

>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'

Careful: An element of a string is itself a
string, but with only one element!

16

However, the "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"
True
>>> 234 in [1, 2, 3, 4, 5]
False
>>> [2, 3, 4] in [1, 2, 3, 4, 5]
False

When working with strings, we usually care about whole words more than letters

Length and element selection are similar to all sequences

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

Dictionaries are unordered collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

18

