CS 61A Lecture 12

Monday, September 29

Announcements

Homework 3 due Wednesday 10/1 @ 11:59pm
Homework Party on Monday 9/29, time and place TBD
Optional Hog Contest due Wednesday 10/1 @ 11:59pm

Project 2 due Thursday 10/9 @ 11:59pm

Box-and-Pointer Notation

The Closure Property of Data Types

* A method for combining data values satisfies the closure property if:
* The result of combination can itself be combined using the same method.

e Closure is the key to power in any means of combination because it permits
us to create hierarchical structures.

e Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on.

Lists can contain lists as elements

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

Global frame list

0 1
pair ./\)] 5

nested_list
\Ilst list
eyl

pair = [1’ 2] list list

nested list = [[1, 2], [], '+<</?

[[3, False, None]
[4, lambda: 5]11 Ilst func A() <line 5> [parent=Globall]

empty list

3 False None

Interactive Diagram

Trees

Trees are Nested Sequences

A tree is either a single value called a leaf or a sequence of trees

Typically, some type restriction is placed on the leaves. E.g., a tree of numbers:

--

Global frame : {-ﬁé;--.i E

0 -

tree « sy b

t RN L

\.S‘LF{;&‘; :

g list !
1 tree = [[1, [2], 3, [11. ; :
2 [[4], (5, 611, 7] s .
O

'¢

Tree Processing Uses Recursion
(Demo)

Processing a leaf is often the base case of a tree processing function

The recursive case often makes a recursive call on each branch and then aggregates

def count_leaves(tree):
"""Count the leaves of a tree."""
if is_leaf(tree):
return 1
else:
branch_counts = [count_leaves(b) for b in treel

return sum(branch_counts)

Discussion Question

Complete the definition of flatten, which takes a tree and returns a list of its leaves

Hint: If you sum a sequence of lists, you get 1 list containing the elements of those lists

>>> sum([[1], [2, 31, [411, [1) def
[1, 2, 3, 4]

>>> sum([[1]], [I)

[1]

>>> Sum([[[l]]; [2]]; [])

[[1], 2]

def

flatten(tree):
"""Return a list containing the leaves of tree.

>>> tree = [[1, [2], 3, [11, [[4]1, [5, 611, 7]
>>> flatten(tree)
[1, 2, 3, 4, 5, 6, 7]
if is_leaf(tree):
return [tree]

else:
return sum([flatten(b) for b in tree], [])

is_leaf(tree):
return type(tree) != list

Sequence Operations

Membership & Slicing

Python sequences have operators for membership and slicing

Membership.

>>> digits = [1, 8, 2, 8]

>>> 2 in digits

True

>>> 1828 not in digits
True

Slicing.

digits =
start =
middle =
end =

[1, 8, 2, 8]
digits[:1]
digits[1:3]
digits[2:]

>>> digit5[012]<[511cing creates a new object:

[1, 8]

>>> digits[1:]
[8, 2, 8]

Global frame

digits ¢ =

start
middle
end

Binary Trees

Trees may also have restrictions on their structure

A binary tree is either a leaf or a sequence containing at most two binary trees

The process of transforming a tree into a binary tree is called binarization

def right_binarize(tree):
"""Construct a right-branching binary tree.

>>> right_binarize([1, 2, 3, 4, 5, 6, 7])
[1, [2, [3, [4, [5, [6, 711111]]

return tree grouped into a new branch

if is_leaf(tree): A1l but the first branch are :
if len(tree) > 2: .

tree = [tree[@],itree[l:ﬁ]

........ 4

return [right_binarize(b) for b in treel (Demo)

Strings

Strings are an Abstraction

Representing data:

'200' '1.2e-5" 'False' (1, 2)°

Representing language:

"""And, as imagination bodies forth

The forms of things to unknown, and the poet's pen
Turns them to shapes, and gives to airy nothing

A local habitation and a name.

Representing programs:

'curry = lambda f: lambda x: lambda y: f(x, y)'

(Demo)

String Literals Have Three Forms

>>> 'T am string!'
'I am string!'’

>>> "I've got an apostrophe" Single—-quoted and double-quoted
"I've got an apostrophe" strings are equivalent

>>> ' RET!

s

>>> """The Zen of Python

claims, Readability counts.

Read more: import this.""" o

'The Zen of Pythonﬁhclaims, Readability counts.\nRead more: import this.'

A backslash "escapes" the "Line feed" character
following character represents a new line

Strings are Sequences

Length and element selection are similar to all sequences

>>> city = 'Berkeley’
>>> len(city)
8

=== city[3] < careful: An element of a string is itself a
k string, but with only one element!

However, the "in" and "not in" operators match substrings

>>> 'here' in "Where's Waldo?"

True

>>> 234 in [1, 2, 3, 4, 5]

False

>>> [2, 3, 4] in [1, 2, 3, 4, 5]
False

When working with strings, we usually care about whole words more than letters

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

Dictionaries are unordered collections of key-value pairs

Dictionary keys do have two restrictions:

e A key of a dictionary cannot be a list or a dictionary (or any mutable type)

* Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries
The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

