
CS 61A Lecture 13

Wednesday, October 1

Announcements

• Homework 3 Due Wednesday 10/1 @ 11:59pm

• Optional Hog Contest Due Wednesday 10/1 @ 11:59pm

• Project 2 Due Thursday 10/9 @ 11:59pm

!Project party Monday 10/6, 6pm-8pm in location TBD

• Special event on Tuesday 10/14 @ 7pm in Wheeler:  
Fireside chat with Founder & CEO of DropBox Drew Houston, hosted by John

• You can submit questions, and I'll ask them: http://goo.gl/HtkXFf

2

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

Dictionaries are unordered collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

4

Linked Lists

Linked List Data Abstraction

Constructor:
def link(first, rest):
 """Construct a linked list from its first element and the rest."""

Selectors:
def first(s):
 """Return the first element of a linked list s."""
!
!
def rest(s):
 """Return the rest of the elements of a linked list s."""

Behavior condition(s):

If a linked list s is constructed from a first element a and a linked list b, then

•first(s) returns a, which is an element of the sequence

•rest(s) returns b, which is a linked list

6

Implementing Recursive Lists with Pairs

We can implement linked lists as pairs. We'll use two-element lists to represent pairs.

7

A linked list
is a pair

The 0-indexed element of
the pair is the first
element of the linked

list

The 1-indexed element
of the pair is the rest

of the linked list

"empty"
represents
the empty

list

(Demo)

1 , 2 , 3 , 4

This data structure
has many names:

•Linked list (C, Java)
•List (Lisp)
•Forward list (C++)

Sequence Abstraction Implementation

Implementing the Sequence Abstraction

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0 for the first element.

(Demo)

def len_link(s):
 """Return the length of linked list s."""
 length = 0
 while s != empty:
 s, length = rest(s), length + 1
 return length

def getitem_link(s, i):
 """Return the element at index i of linked list s."""
 while i > 0:
 s, i = rest(s), i - 1
 return first(s)

9Interactive Diagram

Recursive implementations

(Demo)

Linked List Processing

(Demo)

extend
reverse

apply_to_all_link
join_link
partitions

print_partitions

Rooted Trees

Rooted Trees Have a Value at the Root of Every Tree

Previously, trees either had branches or they were a leaf value

13

A rooted tree has a root value and a sequence of branches, which are rooted trees

A rooted tree with zero branches is called a leaf

The root values of sub-trees within a rooted tree are often called node values or nodes

5

2

1

3

1

0 1 1

0 1

2

1 1

0 11 2 3 4
5

[[1, 2], [3, 4], 5][[1, 2], [3, 4], 5]

; Rooted trees have both

Implementing the Rooted Tree Abstraction

A rooted tree has a root value
and a sequence of branches,  
which are each rooted trees

(Demo)

14

def rooted(value, branches):
 for branch in branches:
 assert is_rooted(branch)
 return [value] + list(branches)
!

def root(tree):
 return tree[0]
!

def branches(tree):
 return tree[1:]
!

def is_rooted(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_rooted(branch):
 return False
 return True

>>> rooted(3, [rooted(1, []),
... rooted(2, [rooted(1, []),
... rooted(1, [])])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Encoding Strings

(Bonus Material)

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange
8

ro
ws

:
3

bi
ts

16 columns: 4 bits

•Layout was chosen to support sorting by character code
•Rows indexed 2-5 are a useful 6-bit (64 element) subset
•Control characters were designed for transmission

"Line feed" (\n)"Bell" (\a)

16

(Demo)

Representing Strings: the Unicode Standard

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

• 109,000 characters
•93 scripts (organized)
•Enumeration of character properties,
such as case

•Supports bidirectional display order
•A canonical name for every character

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

'☺' '☹'
17

(Demo)

Representing Strings: UTF-8 Encoding

UTF (UCS (Universal Character Set) Transformation Format)

Unicode: Correspondence between characters and integers

UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

Variable-length encoding: integers vary in the number of bytes required to encode them.

00000000 0
00000001 1

00000011 3
00000010 2

bytes integers

In Python: string length is measured in characters, bytes length in bytes.

18

(Demo)

