CS 61A Lecture 13

Wednesday, October 1

Announcements

Homework 3 Due Wednesday 10/1 @ 11:59pm
Optional Hog Contest Due Wednesday 10/1 @ 11:59pm
Project 2 Due Thursday 10/9 @ 11:59pm

Project party Monday 10/6, o6pm-8pm in location TBD

Special event on Tuesday 10/14 @ 7pm in Wheeler:
Fireside chat with Founder & CEO of DropBox Drew Houston, hosted by John

You can submit questions, and I'll ask them: http://goo.gl/HtkXFf

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

Dictionaries are unordered collections of key-value pairs

Dictionary keys do have two restrictions:

e A key of a dictionary cannot be a list or a dictionary (or any mutable type)

* Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries
The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

Linked Lists

Linked List Data Abstraction

Constructor:

def link(first, rest):
"""Construct a linked list from its first element and the rest."""

Selectors:

def first(s):
"""Return the first element of a linked list s."""

def rest(s):
"""Return the rest of the elements of a linked list s."""

Behavior condition(s):

If a linked list s is constructed from a first element a and a linked list b, then
e first(s) returns a, which is an element of the sequence

e rest(s) returns b, which is a linked 1list

Implementing Recursive Lists with Pairs

We can implement linked lists as pairs. We'll use two-element lists to represent pairs.

A linked list 1,2,3, 4 “empty"”
is a pair __________________________ i represents
list 1§ list list list the empty
i L list
— Om_ 1 10 1 0 1 0 1 :
: l : / 2 / 3 / 4 "empty"
e N e R T Y (b
""" s
The 9-indexed element OT || The 1-indexed element This data structure
elemZnt of the linked of the pair 1s the rest has many names:
e of the linked list

elLinked list (C, Java)

eList (Lisp)

eForward list (C++)
(Demo) N

Sequence Abstraction Implementation

Implementing the Sequence Abstraction

def len_link(s):
"""Return the length of linked list s."""
length = 0
while s != empty:
s, length = rest(s), length + 1
return length

def getitem_link(s, i):
"""Return the element at index i1 of linked list s.
while i > 0:
s, 1= rest(s), i -1
return first(s)

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at @ for the first element.

(Demo)

Interactive Diagram

Recursive implementations

(Demo)

Linked List Processing

extend
reverse
apply_to_all_link
join_link
partitions
print_partitions

(Demo)

Rooted Trees

Rooted Trees Have a Value at the Root of Every Tree

Previously, trees either had branches or they were a leaf value; Rooted trees have both

[f1, 21, [3, 4], 5]

A rooted tree has a root value and a sequence of branches, which are rooted trees
A rooted tree with zero branches is called a leaf

The root values of sub-trees within a rooted tree are often called node values or nodes

Implementing the Rooted Tree Abstraction

def

def

def

def

rooted(value, branches):
for branch in branches:

assert is_rooted(branch)
return [value]l + list(branches)

root(tree):
return treel[0]

branches(tree):
return tree[l:]

is_rooted(tree):

if type(tree) !'= list or len(tree) < 1:

return False
for branch in branches(tree):
if not is_rooted(branch):
return False
return True

A rooted tree has a root value
and a sequence of branches,
which are each rooted trees

3
1 2
/ AN
1 1

>>> rooted(3, [rooted(1, []),

. rooted(2, [rooted(1, [1]),
. rooted(1, [1)1)1)
[3, [11, (2, [1], [1]]]

(Demo)

Encoding Strings

(Bonus Material)

Representing Strings: the ASCII Standard

3 bits

8 rows:

American Standard Code for Information Interchange

* Control characters were designed for transmission

(Demo)

"Bell" a "Line feed" n
[e SCII Code Chart (\n)
0 1 2 3 4 5 7 8 9 A B C D E F
T o|nuL[soH|sTX |ETX [EOT [ENQ |ACKTBEL| BS | HT | LF'| vT [FF | cR | SO | SI
1|DLE |DC1 |DC2 | DC3 |DC4 |NAK | SYN |ETB|CAN| EM |SUB|ESC| FS | GS | RS | US
2 Ll | # | $]| % | & ¢ () | x| + | v - /
3] O 1 2 3 4 5 6 7 8 9 - H < = > ?
4| @ A B C D E F G H I J K L M N 0
5| P Q R S T U V W X Y Z [\ 1 A -
6 alb|c|d|e]| f|9|h|i|i|k]|]1lT]|m|[n]o
7] p q r s t u v | w | x y z { | } ~ |DEL
16 columns: 4 bits
* Layout was chosen to support sorting by character code
®* Rows indexed 2-5 are a useful 6-bit (64 element) subset

Representing Strings: the Unicode Standard

109,000 characters %» ﬁE EET‘E H% EHH ngi Ea‘

8075 8076 8077 8078

el R B | B |

8172 8173 8174 8175 8176 8177 8178

15| ¥ | b | e | 56| 96 |

8275 8276 8277 8278
b = —’X —= | HKE
2 \: [] > 1 nl
Pl A 7

8375 8376 8377 8378

X

=3
1=
S
=3
=1
=
N
=
1=
=
@
=
=1
=
S

® 93 scripts (organized)

* Enumeration of character properties,
such as case

]
P
wH

® Supports bidirectional display order

o
[
=
o
)
~
N
o
N
=
@
o
N~
=
S

* A canonical name for every character

i
g
o
P

o
@
=
3
@
9
]
53
@
=
P}
53
@
]
N

& | =Kk 4
ok | B |

VAN

&

G

5% | B

http://ian-albert.com/unicode_chart/unichart-chinese.jpg

I®I

U+0058 LATIN CAPITAL LETTER X

©

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE (Demo)

Representing Strings: UTF-8 Encoding
UTF (UCS (Universal Character Set) Transformation Format)
Unicode: Correspondence between characters and integers
UTF-8: Correspondence between those integers and bytes

A byte is 8 bits and can encode any integer 0-255.

00000000
00000001
00000010
00000011

bytes integers

w N R O

Variable-length encoding: integers vary in the number of bytes required to encode them.
In Python: string length is measured in characters, bytes length in bytes.

(Demo)

