
61A Lecture 16

Wednesday, October 8

Announcements

• Project 2 due Thursday 10/9 @ 11:59pm

• Homework 5 due Wednesday 10/15 @ 11:59pm

• Special event on Tuesday 10/14 @ 7pm, John interviews Dropbox CEO/founder Drew Houston

!No video, so come to Wheeler

!Suggest questions and vote for your favorites at http://goo.gl/HtkXFf or on Piazza

2

Object-Oriented Programming

Object-Oriented Programming

A method for organizing modular programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Steven's
Account

John

Withdraw
$10

Deposit
$10

Apply for
a loan!

Classes

A class serves as a template for its instances.

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance.

Idea: All bank accounts should have
"withdraw" and "deposit" behaviors that all
work in the same way.

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Better idea: All bank accounts share a
"withdraw" method and a "deposit" method.

5

Class Statements

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment.

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

The suite is executed when the
class statement is executed.

>>> class Clown:
... nose = 'big and red'
... def dance():
... return 'No thanks'
...
>>> Clown.nose
'big and red'
>>> Clown.dance()
'No thanks'
>>> Clown
<class '__main__.Clown'>

class <name>:
 <suite>

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression.

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

balance: 0 holder: 'Jim'

__init__ is called
a constructor

Object Identity

>>> a = Account('Jim')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class has a unique identity:

Binding an object to a new name using assignment does not create a new object:

Identity operators "is" and "is not" test if two expressions evaluate to the same object:

>>> c = a
>>> c is a
True

9

Every call to Account creates a new Account
instance. There is only one Account class.

>>> a.balance
0
>>> b.holder
'Jack'

Methods

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

These def statements create function objects as always, 
but their names are bound as attributes of the class

11

self should always be bound to an instance of the Account class

s

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state.

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Dot notation automatically supplies the first argument to a method.

Invoked with one argument

Defined with two arguments

12

Dot Expressions

Objects receive messages via dot notation.

Dot notation accesses attributes of the instance or its class.

<expression> . <name>

The <expression> can be any valid Python expression.

The <name> must be a simple name.

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>.

tom_account.deposit(10)

Dot expression
Call expression

13

(Demo)

Attributes

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

•One of its instance attributes, or

•One of the attributes of its class

15

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked.

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1003)
2014

16

Function: all arguments within parentheses

Method: One object before the dot and
other arguments within parentheses

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression.

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned.

3. If not, <name> is looked up in the class, which yields a class attribute value.

4. That value is returned unless it is a function, in which case a bound method is
returned instead.

17

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance.

class Account:
 interest = 0.02 # A class attribute
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder
 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

18

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

Attribute Assignment

Assignment Statements and Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for
the object of that dot expression

• If the object is an instance, then assignment sets an instance attribute

• If the object is a class, then assignment sets a class attribute

>>> jim_account = Account('Jim')
>>> tom_account = Account('Tom')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02
>>> Account.interest = 0.04
>>> tom_account.interest
0.04

>>> jim_account.interest = 0.08
>>> jim_account.interest
0.08
>>> tom_account.interest
0.04
>>> Account.interest = 0.05
>>> tom_account.interest
0.05
>>> jim_account.interest
0.08

20

