
61A Lecture 16

Wednesday, October 8



Announcements

• Project 2 due Thursday 10/9 @ 11:59pm 

• Homework 5 due Wednesday 10/15 @ 11:59pm 

• Special event on Tuesday 10/14 @ 7pm, John interviews Dropbox CEO/founder Drew Houston 

!No video, so come to Wheeler 

!Suggest questions and vote for your favorites at http://goo.gl/HtkXFf or on Piazza
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Object-Oriented Programming



Object-Oriented Programming

A method for organizing modular programs 

• Data abstraction 

• Bundling together information and related behavior 

A metaphor for computation using distributed state 

• Each object has its own local state 

• Each object also knows how to manage its own local state, 
based on method calls 

• Method calls are messages passed between objects 

• Several objects may all be instances of a common type 

• Different types may relate to each other 

Specialized syntax & vocabulary to support this metaphor
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Classes

A class serves as a template for its instances.

Idea: All bank accounts have a balance and 
an account holder; the Account class should 
add those attributes to each newly created 
instance.

Idea: All bank accounts should have 
"withdraw" and "deposit" behaviors that all 
work in the same way.

>>> a = Account('Jim') 
>>> a.holder 
'Jim' 
>>> a.balance 
0

>>> a.deposit(15) 
15 
>>> a.withdraw(10) 
5 
>>> a.balance 
5 
>>> a.withdraw(10) 
'Insufficient funds'

Better idea: All bank accounts share a 
"withdraw" method and a "deposit" method.
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Class Statements



The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of 
the current environment. 

Assignment & def statements in <suite> create attributes of the class (not names in frames)
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The suite is executed when the 
class statement is executed.

>>> class Clown: 
...     nose = 'big and red' 
...     def dance(): 
...         return 'No thanks' 
...  
>>> Clown.nose 
'big and red' 
>>> Clown.dance() 
'No thanks' 
>>> Clown 
<class '__main__.Clown'>

class <name>: 
    <suite>



When a class is called: 

1.A new instance of that class is created:  

2.The __init__ method of the class is called with the new object as its first 
argument (named self), along with any additional arguments provided in the 
call expression.

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim') 
>>> a.holder 
'Jim' 
>>> a.balance 
0

class Account: 
    def __init__(self, account_holder): 
        self.balance = 0 
        self.holder = account_holder
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balance: 0   holder: 'Jim'

__init__ is called 
a constructor



Object Identity

>>> a = Account('Jim') 
>>> b = Account('Jack')

>>> a is a 
True 
>>> a is not b 
True

Every object that is an instance of a user-defined class has a unique identity:

Binding an object to a new name using assignment does not create a new object:

Identity operators "is" and "is not" test if two expressions evaluate to the same object:

>>> c = a 
>>> c is a 
True
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Every call to Account creates a new Account 
instance.  There is only one Account class.

>>> a.balance 
0 
>>> b.holder 
'Jack'



Methods



Methods

Methods are functions defined in the suite of a class statement

class Account: 
    def __init__(self, account_holder): 
        self.balance = 0 
        self.holder = account_holder 

    def deposit(self, amount): 
        self.balance = self.balance + amount 
        return self.balance 
    def withdraw(self, amount): 
        if amount > self.balance: 
            return 'Insufficient funds' 
        self.balance = self.balance - amount 
        return self.balance

These def statements create function objects as always, 
but their names are bound as attributes of the class
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self should always be bound to an instance of the Account class

s



Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all 
access and manipulate the object's state.

class Account: 
    ... 
    def deposit(self, amount): 
        self.balance = self.balance + amount 
        return self.balance

>>> tom_account = Account('Tom') 
>>> tom_account.deposit(100) 
100

Dot notation automatically supplies the first argument to a method.

Invoked with one argument

Defined with two arguments
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Dot Expressions

Objects receive messages via dot notation. 

Dot notation accesses attributes of the instance or its class.

<expression> . <name>

The <expression> can be any valid Python expression. 

The <name> must be a simple name. 

Evaluates to the value of the attribute looked up by <name> in the object 
that is the value of the <expression>.

tom_account.deposit(10)

Dot expression
Call expression
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(Demo)



Attributes



Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance') 
10 

>>> hasattr(tom_account, 'deposit') 
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return: 

•One of its instance attributes, or 

•One of the attributes of its class
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Methods and Functions

Python distinguishes between: 

• Functions, which we have been creating since the beginning of the course, and  

• Bound methods, which couple together a function and the object on which that 
method will be invoked.

Object  +  Function  =  Bound Method

>>> type(Account.deposit) 
<class 'function'> 
>>> type(tom_account.deposit) 
<class 'method'>

>>> Account.deposit(tom_account, 1001) 
1011 
>>> tom_account.deposit(1003) 
2014
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Function: all arguments within parentheses

Method: One object before the dot and 
other arguments within parentheses



Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression: 

1. Evaluate the <expression> to the left of the dot, which yields the object of 
the dot expression. 

2. <name> is matched against the instance attributes of that object; if an 
attribute with that name exists, its value is returned. 

3. If not, <name> is looked up in the class, which yields a class attribute value.  

4. That value is returned unless it is a function, in which case a bound method is 
returned instead.
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Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes 
of the class, not the instance.

class Account: 
    interest = 0.02   # A class attribute 
    def __init__(self, account_holder): 
        self.balance = 0 
        self.holder = account_holder 
    # Additional methods would be defined here

The interest attribute is not part of 
the instance; it's part of the class!
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>>> tom_account = Account('Tom') 
>>> jim_account = Account('Jim') 
>>> tom_account.interest 
0.02 
>>> jim_account.interest 
0.02



Attribute Assignment



Assignment Statements and Attributes

Assignment statements with a dot expression on their left-hand side affect attributes for 
the object of that dot expression 

• If the object is an instance, then assignment sets an instance attribute 

• If the object is a class, then assignment sets a class attribute

>>> jim_account = Account('Jim') 
>>> tom_account = Account('Tom') 
>>> tom_account.interest 
0.02 
>>> jim_account.interest 
0.02 
>>> Account.interest = 0.04 
>>> tom_account.interest 
0.04

>>> jim_account.interest = 0.08 
>>> jim_account.interest 
0.08 
>>> tom_account.interest 
0.04 
>>> Account.interest = 0.05 
>>> tom_account.interest 
0.05 
>>> jim_account.interest 
0.08
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