61A Lecture 18

Monday, October 13

Announcements

•Homework 5 is due Wednesday 10/15 @ 11:59pm

- -Homework party Monday 10/13 6pm-8pm in 2050 VLSB
- Homework is graded on effort; you don't need to spend 8 hours on one problem
 Project 3 is due Thursday 10/23 @ 11:59pm
- Midterm 2 is on Monday 10/27 7pm-9pm

Class Conflict? Fill out the conflict form at the top of http://cs61a.org
 Hog strategy contest winners will be announced on Wednesday 10/15 in Lecture
 Fireside chat with Dropbox CEO Drew Houston on Tuesday 10/14 @ 7pm in Wheeler

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations: •The str is legible to humans

• The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

The repr String for an Object

The repr function returns a Python expression (a string) that evaluates to an equal object

String Representations

repr(object) -> string

Return the canonical string representation of the object. For most object types, eval(repr(object)) == object.

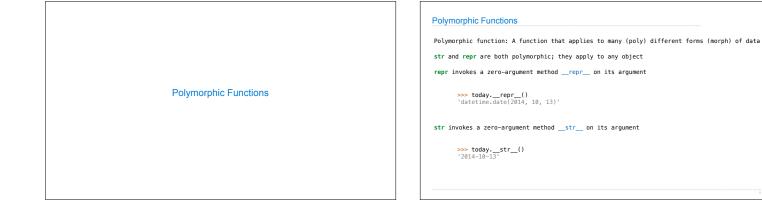
The result of calling repr on a value is what Python prints in an interactive session

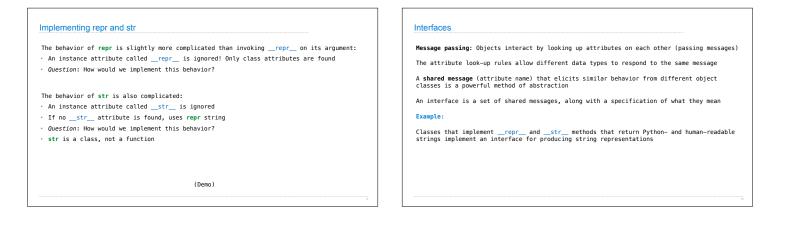
>>> 12e12 120000000000.0 >>> print(repr(12e12)) 1200000000000.0

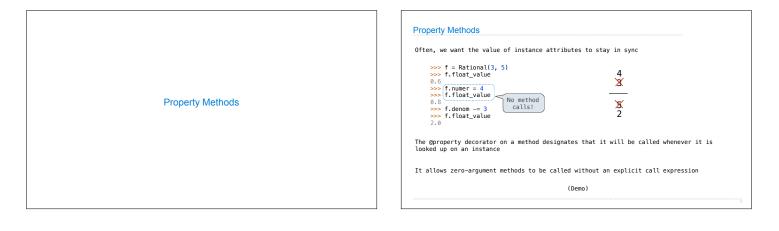
Some objects do not have a simple Python-readable string

>>> repr(min)
'<built-in function min>'

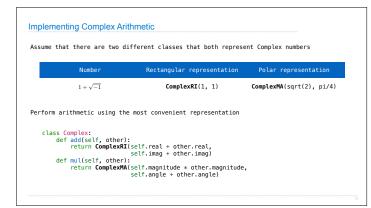
The str String for an Object

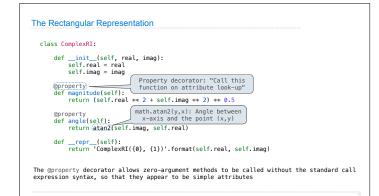

Human interpretable strings are useful as well:

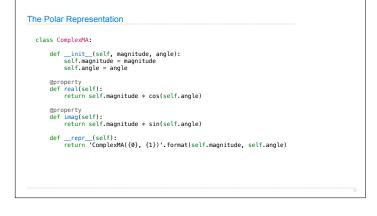

>>> import datetime
>>> today = datetime.date(2014, 10, 13)
>>> repr(today)
'datetime.date(2014, 10, 13)'
>>> str(today)
'2014-10-13'


The result of calling str on the value of an expression is what Python prints using the print function:

>>> print(today) 2014-10-13


(Demo)




	Multiple Representations of Abstract Data Rectangular and polar representations for complex numbers	
Example: Complex Numbers	(1,1)	
	Most programs don't care about the representation Some arithmetic operations are easier using one representation than the other	

rts of the program that	Treat complex numbers as	Using
Use complex numbers to perform computation	whole data values	<pre>x.add(y), x.mul(y)</pre>
Add complex numbers	real and imaginary parts	real, imag, ComplexRI
Multiply complex numbers	magnitudes and angles	magnitude, angle, ComplexMA

sing	Complex Numbers
ither	type of complex number can be either argument to add or mul:
cl	ass Complex:
	def add(self, other):
	<pre>return ComplexRI(self.real + other.real,</pre>
	def mul(self, other):
	<pre>return ComplexMA(self.magnitude * other.magnitude,</pre>
	sectioning te + other rangeey
>>:	> from math import pi
>>:	<pre>> ComplexRI(1, 2).add(ComplexMA(2, pi/2))</pre>
Co	nplexRI(1.00000000000000002, 4.0) $-1 + 4 \cdot \sqrt{-1}$
>>:	<pre>> ComplexRI(0, 1).mul(ComplexRI(0, 1))</pre>
Co	nplexMA(1.0, 3.141592653589793)