
61A Lecture 18

Monday, October 13

Announcements

• Homework 5 is due Wednesday 10/15 @ 11:59pm

!Homework party Monday 10/13 6pm-8pm in 2050 VLSB

!Homework is graded on effort; you don't need to spend 8 hours on one problem

• Project 3 is due Thursday 10/23 @ 11:59pm

• Midterm 2 is on Monday 10/27 7pm-9pm

!Class Conflict? Fill out the conflict form at the top of http://cs61a.org

• Hog strategy contest winners will be announced on Wednesday 10/15 in Lecture

• Fireside chat with Dropbox CEO Drew Houston on Tuesday 10/14 @ 7pm in Wheeler

2

String Representations

String Representations

An object value should behave like the kind of data it is meant to represent

For instance, by producing a string representation of itself

Strings are important: they represent language and programs

In Python, all objects produce two string representations:

• The str is legible to humans

• The repr is legible to the Python interpreter

The str and repr strings are often the same, but not always

4

The repr String for an Object

The result of calling repr on a value is what Python prints in an interactive session

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects do not have a simple Python-readable string

repr(object) -> string
!
Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (a string) that evaluates to an equal object

>>> repr(min)
'<built-in function min>'

5

The str String for an Object

Human interpretable strings are useful as well:

>>> import datetime
>>> today = datetime.date(2014, 10, 13)
>>> repr(today)
'datetime.date(2014, 10, 13)'
>>> str(today)
'2014-10-13'

(Demo)

The result of calling str on the value of an expression is what Python prints
using the print function:

6

>>> print(today)
2014-10-13

Polymorphic Functions

Polymorphic Functions

Polymorphic function: A function that applies to many (poly) different forms (morph) of data

str and repr are both polymorphic; they apply to any object

repr invokes a zero-argument method __repr__ on its argument

str invokes a zero-argument method __str__ on its argument

>>> today.__repr__()
'datetime.date(2014, 10, 13)'

>>> today.__str__()
'2014-10-13'

8

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored! Only class attributes are found

• Question: How would we implement this behavior?

!

The behavior of str is also complicated:

• An instance attribute called __str__ is ignored

• If no __str__ attribute is found, uses repr string

• Question: How would we implement this behavior?

• str is a class, not a function

9

(Demo)

Interfaces

Message passing: Objects interact by looking up attributes on each other (passing messages)

The attribute look-up rules allow different data types to respond to the same message

A shared message (attribute name) that elicits similar behavior from different object
classes is a powerful method of abstraction

An interface is a set of shared messages, along with a specification of what they mean

Example:

Classes that implement __repr__ and __str__ methods that return Python- and human-readable
strings implement an interface for producing string representations

10

Property Methods

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> f = Rational(3, 5)
>>> f.float_value
0.6
>>> f.numer = 4
>>> f.float_value
0.8
>>> f.denom -= 3
>>> f.float_value
2.0

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

(Demo)

It allows zero-argument methods to be called without an explicit call expression

12

3

5

4

2
No method
calls!

Example: Complex Numbers

Multiple Representations of Abstract Data

Rectangular and polar representations for complex numbers

Most programs don't care about the representation

Some arithmetic operations are easier using one representation than the other

(1, 1) (
�

2,
�

4
)

14

Implementing Complex Arithmetic

Assume that there are two different classes that both represent Complex numbers

15

Perform arithmetic using the most convenient representation

class Complex:
 def add(self, other):
 return ComplexRI(self.real + other.real,
 self.imag + other.imag)
 def mul(self, other):
 return ComplexMA(self.magnitude * other.magnitude,
 self.angle + other.angle)

Number Rectangular representation Polar representation

ComplexRI(1, 1) ComplexMA(sqrt(2), pi/4)1 +
p
�1

Complex Arithmetic Abstraction Barriers

16

Parts of the program that... Treat complex numbers as... Using...

Use complex numbers  
to perform computation whole data values x.add(y), x.mul(y)

Add complex numbers real and imaginary parts real, imag, ComplexRI

Multiply complex numbers magnitudes and angles magnitude, angle, ComplexMA

Implementation of the Python object system

Implementing Complex Numbers

An Interface for Complex Numbers

All complex numbers should have real and imag components

All complex numbers should have a magnitude and angle

All complex numbers should share an implementation of add and mul

(Demo)

18

Complex

ComplexRI ComplexMA

The Rectangular Representation

The @property decorator allows zero-argument methods to be called without the standard call
expression syntax, so that they appear to be simple attributes

class ComplexRI:
!
 def __init__(self, real, imag):
 self.real = real
 self.imag = imag
!
 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5
!
 @property
 def angle(self):
 return atan2(self.imag, self.real)
!
 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real, self.imag)

math.atan2(y,x): Angle between
x-axis and the point (x,y)

Property decorator: "Call this
function on attribute look-up"

19

The Polar Representation

20

class ComplexMA:
!
 def __init__(self, magnitude, angle):
 self.magnitude = magnitude
 self.angle = angle
!
 @property
 def real(self):
 return self.magnitude * cos(self.angle)
!
 @property
 def imag(self):
 return self.magnitude * sin(self.angle)
!
 def __repr__(self):
 return 'ComplexMA({0}, {1})'.format(self.magnitude, self.angle)

Using Complex Numbers

Either type of complex number can be either argument to add or mul:

>>> from math import pi

>>> ComplexRI(1, 2).add(ComplexMA(2, pi/2))

ComplexRI(1.0000000000000002, 4.0)

>>> ComplexRI(0, 1).mul(ComplexRI(0, 1))

ComplexMA(1.0, 3.141592653589793)

21

class Complex:
 def add(self, other):
 return ComplexRI(self.real + other.real,
 self.imag + other.imag)
 def mul(self, other):
 return ComplexMA(self.magnitude * other.magnitude,
 self.angle + other.angle)

1 + 4 ·
p
�1

�1

