
61A Lecture 22

Wednesday, October 22

Announcements

• Project 3 is due Thursday 10/23 @ 11:59pm
!Please submit two ways: the normal way and using python3 ok --submit!
!You can view your ok submission on the ok website: http://ok.cs61a.org

• Midterm 2 is on Monday 10/27 7pm-9pm
!Review session on Saturday 10/25 3pm-6pm in 2050 VLSB
!Conflict form submissions are due Wednesday 10/22!

2

Sets

Sets

One more built-in Python container type

• Set literals are enclosed in braces

• Duplicate elements are removed on construction

• Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}
>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}

4

Implementing Sets

What we should be able to do with a set:

• Membership testing: Is a value an element of a set?

• Union: Return a set with all elements in set1 or set2

• Intersection: Return a set with any elements in set1 and set2

• Adjoin: Return a set with all elements in s and a value v

Union

1

3
4

2

3
5

1

3
4

2

5

Intersection

1

3
4

2

3
5

3

Adjoin

1

3
4

2

1

3
4

2

5

Sets as Unordered Sequences

Sets as Unordered Sequences

Proposal 1: A set is represented by a linked list that contains no duplicate items.

(Demo)

7

Time order of growth

⇥(1)

⇥(n)

Time depends on whether
& where v appears in s

Assuming v either  
does not appear in s  

or  
appears in a uniformly

distributed random location

def empty(s):
 return s is Link.empty

def set_contains(s, v):
 """Return whether set s contains value v.
!
 >>> s = Link(1, Link(2, Link(3)))
 >>> set_contains(s, 2)
 True
 """
 if empty(s):
 return False
 elif s.first == v:
 return True
 else:
 return set_contains(s.rest, v)

�(n)

�(n2)

Sets as Unordered Sequences

�(n2)

Time order of growth

The size of the set

If sets are
the same size

8

(Demo)

Need a new version defined
for Link instances

Need a new version defined
for Link instances

def adjoin_set(s, v):
 if set_contains(s, v):
 return s
 else:
 return Link(v, s)

def intersect_set(set1, set2):
 in_set2 = lambda v: set_contains(set2, v)
 return keep_if(set1, in_set2)

def union_set(set1, set2):
 not_in_set2 = lambda v: not set_contains(set2, v)
 set1_not_set2 = keep_if(set1, not_in_set2)
 return extend(set1_not_set2, set2)

Sets as Ordered Sequences

Sets as Ordered Sequences

Proposal 2: A set is represented by a linked list with unique elements that is  
ordered from least to greatest

10

Parts of the program that... Assume that sets are... Using...

Use sets to contain values Unordered collections empty, set_contains, adjoin_set,
intersect_set, union_set

Implement set operations Ordered linked lists first, rest, <, >, ==

Different parts of a program may make different assumptions about data

Sets as Ordered Sequences

Proposal 2: A set is represented by a linked list with unique elements that is  
ordered from least to greatest

11

def intersect_set(set1, set2):
 if empty(set1) or empty(set2):
 return Link.empty
 else:
 e1, e2 = set1.first, set2.first
 if e1 == e2:
 return Link(e1, intersect_set(set1.rest, set2.rest))
 elif e1 < e2:
 return intersect_set(set1.rest, set2)
 elif e2 < e1:
 return intersect_set(set1, set2.rest)

�(n)Order of growth?

Sets as Binary Search Trees

Binary Search Trees

Proposal 3: A set is represented as a Tree with two branches. Each entry is:

• Larger than all entries in its left branch and

• Smaller than all entries in its right branch

7

3

1 5

9

11

7

3

1

5 9

11

5

3

1 7

9

11

13

Binary Tree Class

A binary tree is a tree that has
a left branch and a right branch

Idea: Fill the place of a missing
left branch with an empty tree

Idea 2: An instance of BinaryTree
always has exactly two branches

14

7

3

1

5 9

11
E

E: An empty tree

E E

E E

E E

class BinaryTree(Tree):
 empty = Tree(None)
 empty.is_empty = True
!
 def __init__(self, entry, left=empty, right=empty):
 Tree.__init__(self, entry, (left, right))
 self.is_empty = False
!
 @property
 def left(self):
 return self.branches[0]
!
 @property
 def right(self):
 return self.branches[1]

Bin = BinaryTree
t = Bin(3, Bin(1),
 Bin(7, Bin(5),
 Bin(9, Bin.empty,
 Bin(11))))

Membership in Binary Search Trees

set_contains traverses the tree

• If the element is not the entry, it can only be in either the left or right branch

• By focusing on one branch, we reduce the set by about half with each recursive call

5

3

1 7

9

11

def set_contains(s, v):
 if s.is_empty:
 return False
 elif s.entry == v:
 return True
 elif s.entry < v:
 return set_contains(s.right, v)
 elif s.entry > v:
 return set_contains(s.left, v)

9

If 9 is in the
set, it is in
this branch

Order of growth?
15

on average⇥(h) ⇥(log n) on average for a balanced tree

Adjoining to a Tree Set

5

3

1 7

9

11

8

7

9

11

8

7

8

Right! Left! Right!

E E

8

E

Stop!

87

8
7

9

11

8

5

3

1 7

9

11

8 (Demo)
16

