
61A Lecture 22

Wednesday, October 22



Announcements

• Project 3 is due Thursday 10/23 @ 11:59pm 
!Please submit two ways: the normal way and using python3 ok --submit! 
!You can view your ok submission on the ok website: http://ok.cs61a.org 

• Midterm 2 is on Monday 10/27 7pm-9pm 
!Review session on Saturday 10/25 3pm-6pm in 2050 VLSB 
!Conflict form submissions are due Wednesday 10/22! 
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Sets



Sets

One more built-in Python container type 

• Set literals are enclosed in braces 

• Duplicate elements are removed on construction 

• Sets are unordered, just like dictionary entries

>>> s = {3, 2, 1, 4, 4} 
>>> s 
{1, 2, 3, 4} 
>>> 3 in s 
True 
>>> len(s) 
4 
>>> s.union({1, 5}) 
{1, 2, 3, 4, 5} 
>>> s.intersection({6, 5, 4, 3}) 
{3, 4}
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Implementing Sets

What we should be able to do with a set: 

• Membership testing: Is a value an element of a set? 

• Union: Return a set with all elements in set1 or set2 

• Intersection: Return a set with any elements in set1 and set2 

• Adjoin: Return a set with all elements in s and a value v
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Sets as Unordered Sequences



Sets as Unordered Sequences

Proposal 1: A set is represented by a linked list that contains no duplicate items.

(Demo)
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Time order of growth

⇥(1)

⇥(n)

Time depends on whether 
& where v appears in s

Assuming v either  
does not appear in s  

or  
appears in a uniformly 

distributed random location

def empty(s): 
    return s is Link.empty

def set_contains(s, v): 
    """Return whether set s contains value v. 
!
    >>> s = Link(1, Link(2, Link(3)))  
    >>> set_contains(s, 2) 
    True 
    """ 
    if empty(s): 
        return False 
    elif s.first == v: 
        return True 
    else: 
        return set_contains(s.rest, v)



�(n)

�(n2)

Sets as Unordered Sequences

�(n2)

Time order of growth

The size of the set

If sets are 
the same size
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(Demo)

Need a new version defined 
for Link instances

Need a new version defined 
for Link instances

def adjoin_set(s, v): 
    if set_contains(s, v): 
        return s 
    else: 
        return Link(v, s)

def intersect_set(set1, set2): 
    in_set2 = lambda v: set_contains(set2, v) 
    return keep_if(set1, in_set2)

def union_set(set1, set2): 
    not_in_set2 = lambda v: not set_contains(set2, v) 
    set1_not_set2 = keep_if(set1, not_in_set2) 
    return extend(set1_not_set2, set2)



Sets as Ordered Sequences



Sets as Ordered Sequences

Proposal 2: A set is represented by a linked list with unique elements that is  
ordered from least to greatest
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Parts of the program that... Assume that sets are... Using...

Use sets to contain values Unordered collections empty, set_contains, adjoin_set, 
intersect_set, union_set

Implement set operations Ordered linked lists first, rest, <, >, ==

Different parts of a program may make different assumptions about data



Sets as Ordered Sequences

Proposal 2: A set is represented by a linked list with unique elements that is  
ordered from least to greatest
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def intersect_set(set1, set2): 
    if empty(set1) or empty(set2): 
        return Link.empty 
    else: 
        e1, e2 = set1.first, set2.first 
        if e1 == e2: 
            return Link(e1, intersect_set(set1.rest, set2.rest)) 
        elif e1 < e2: 
            return intersect_set(set1.rest, set2) 
        elif e2 < e1: 
            return intersect_set(set1, set2.rest)

�(n)Order of growth?



Sets as Binary Search Trees



Binary Search Trees

Proposal 3: A set is represented as a Tree with two branches. Each entry is: 

• Larger than all entries in its left branch and 

• Smaller than all entries in its right branch
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Binary Tree Class

A binary tree is a tree that has 
a left branch and a right branch 

Idea: Fill the place of a missing 
left branch with an empty tree 

Idea 2: An instance of BinaryTree 
always has exactly two branches
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class BinaryTree(Tree): 
    empty = Tree(None) 
    empty.is_empty = True 
!
    def __init__(self, entry, left=empty, right=empty): 
        Tree.__init__(self, entry, (left, right)) 
        self.is_empty = False 
!
    @property 
    def left(self): 
        return self.branches[0] 
!
    @property 
    def right(self): 
        return self.branches[1]

Bin = BinaryTree 
t = Bin(3, Bin(1),  
           Bin(7, Bin(5),  
                  Bin(9, Bin.empty,  
                         Bin(11))))



Membership in Binary Search Trees

set_contains traverses the tree 

• If the element is not the entry, it can only be in either the left or right branch 

• By focusing on one branch, we reduce the set by about half with each recursive call
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def set_contains(s, v): 
    if s.is_empty: 
        return False 
    elif s.entry == v: 
        return True 
    elif s.entry < v: 
        return set_contains(s.right, v) 
    elif s.entry > v: 
        return set_contains(s.left, v)
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If 9 is in the 
set, it is in 
this branch

Order of growth?
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on average⇥(h) ⇥(log n) on average for a balanced tree



Adjoining to a Tree Set
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Right! Left! Right!
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