61A Lecture 32

Monday, November 17

Announcements

- Project 4 due Friday 11/21 @ 11:59pm
- Project party Monday 11/17 6:30pm 8:30pm in 10 Evans
- Early submission point #2: Questions 1-16 by Tuesday 11/18 @ 11:59pm
- *Early submission point #3: Submit by Thursday 11/20 @ 11:59pm
- *Homework 9 (6 pts) due Wednesday 11/26 @ 11:59pm

Declarative Languages

Database Management Systems

 ${\tt Database\ management\ systems\ (DBMS)\ are\ important,\ heavily\ used,\ and\ interesting!}$

A table is a collection of records, which are rows that have a value for each column

		· `		
A table has columns and rows	Latitude	Longitude	Name	A column has a name and a type
Cotumins and rows	38	122	Berkeley	name and a type
A row has a value for each column	42	71	Cambridge	
	45	93	Minneapolis	Ĭ
				·)

The Structured Query Language (SQL) is perhaps the most widely used programming language SQL is a declarative programming language

Declarative Programming

In $\mbox{\bf declarative languages}$ such as SQL & Prolog:

- -A "program" is a description of the desired result
- ${}^{\scriptscriptstyle +}\text{The}$ interpreter figures out how to generate the result
- In **imperative languages** such as Python & Scheme:
 ·A "program" is a description of computational processes
- ${}^{\scriptscriptstyle \bullet}\mathsf{The}$ interpreter carries out execution/evaluation rules

Cities:

Latitude	Longitude	Name
38	122	Berkeley
42	71	Cambridge
45	93	Minneapolis

create table cities as			
select 38 as latitude,	122 as longitude,	"Berkeley" as name	union
select 42,	71,	"Cambridge"	union
select 45,	93,	"Minneapolis";	

 Region
 Name

 west coast
 Berkeley

 other
 Minneapolis

 other
 Cambridge

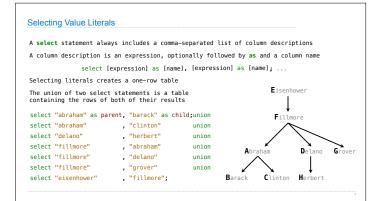
select "west coast" as region, name from cities where longitude >= 115 union
select "other", name from cities where longitude < 115;</pre>

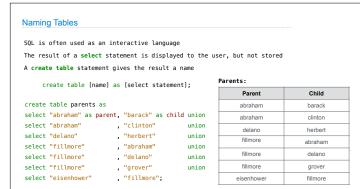
Structured Query Language (SQL)

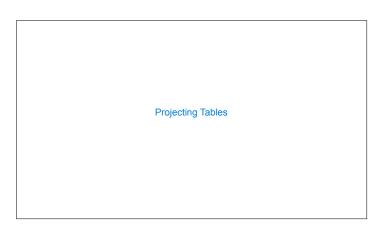
SQL Overview

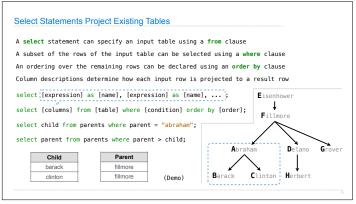
The SQL language is an ANSI and ISO standard, but DBMS's implement custom variants

- ${}^{\mbox{\tiny +}}\mbox{A}$ select statement creates a new table, either from scratch or by projecting a table
- ·A create table statement gives a global name to a table
- ${}^{\circ}\textsc{Lots}$ of other statements exist: analyze, delete, explain, insert, replace, update, etc.
- •Most of the important action is in the select statement
- $^{\circ}\text{The code for executing select statements fits on a single sheet of paper (next lecture)}$

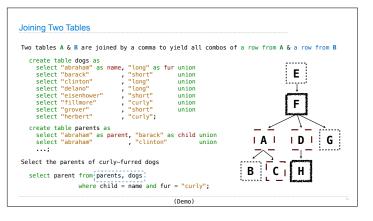

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800w.

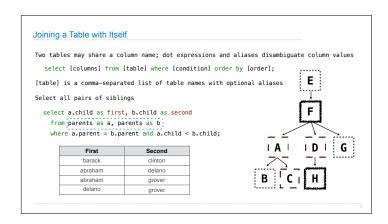

Getting Started with SQL

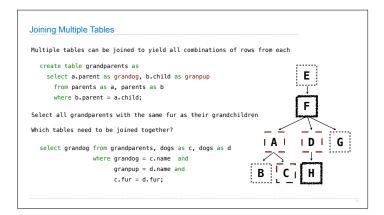

Install sqlite (version 3.8.3 or later): http://sqlite.org/download.html


Use sqlite online: http://kripken.github.io/sql.js/GUI/

Use the SQL example from the textbook: $\underline{\text{http://composingprograms.com/examples/sql/sql.zip}}$







Aliases and Dot Expressions

