61A Lecture 36

Monday, December 1

Announcements	

^			_					_		1 -
Δ	n	n	\cap		n	ce	m		n	TC
$\overline{}$			U	u						LO

•Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

- •Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm

- •Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - -Homework Party Monday 6pm-8pm in 2050 VLSB

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm-8pm in 2050 VLSB
 - -Ask homework questions in lab; both lab and homework are about SQL

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm-8pm in 2050 VLSB
 - *Ask homework questions in lab; both lab and homework are about SQL
- •Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm-8pm in 2050 VLSB
 - -Ask homework questions in lab; both lab and homework are about SQL
- •Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
- •No videos for Lecture 38 on Friday 12/5

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm-8pm in 2050 VLSB
 - Ask homework questions in lab; both lab and homework are about SQL
- •Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
- •No videos for Lecture 38 on Friday 12/5
 - •Come to class and take the final survey

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm-8pm in 2050 VLSB
 - Ask homework questions in lab; both lab and homework are about SQL
- •Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
- •No videos for Lecture 38 on Friday 12/5
 - •Come to class and take the final survey
 - •There will be a screencast of live lecture (as always)

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm-8pm in 2050 VLSB
 - Ask homework questions in lab; both lab and homework are about SQL
- •Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
- •No videos for Lecture 38 on Friday 12/5
 - •Come to class and take the final survey
 - •There will be a screencast of live lecture (as always)
 - Screencasts: http://goo.gl/hyUTca

- Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)
- Homework 10 due Wednesday 12/3 @ 11:59pm
 - Homework Party Monday 6pm-8pm in 2050 VLSB
 - Ask homework questions in lab; both lab and homework are about SQL
- Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm
- •No videos for Lecture 38 on Friday 12/5
 - •Come to class and take the final survey
 - •There will be a screencast of live lecture (as always)
 - Screencasts: http://goo.gl/hyUTca
- Final exam held on Thursday 12/18 3pm-6pm (review info later this week)

Computer Systems	

Systems research enables the development of applications by defining and implementing abstractions:

 Operating systems provide a stable, consistent interface to unreliable, inconsistent hardware

- Operating systems provide a stable, consistent interface to unreliable, inconsistent hardware
- **Networks** provide a robust data transfer interface to constantly evolving communications infrastructure

- Operating systems provide a stable, consistent interface to unreliable, inconsistent hardware
- Networks provide a robust data transfer interface to constantly evolving communications infrastructure
- **Databases** provide a declarative interface to software that stores and retrieves information efficiently

- Operating systems provide a stable, consistent interface to unreliable, inconsistent hardware
- Networks provide a robust data transfer interface to constantly evolving communications infrastructure
- Databases provide a declarative interface to software that stores and retrieves information efficiently
- Distributed systems provide a unified interface to a cluster of multiple machines

Systems research enables the development of applications by defining and implementing abstractions:

- Operating systems provide a stable, consistent interface to unreliable, inconsistent hardware
- Networks provide a robust data transfer interface to constantly evolving communications infrastructure
- **Databases** provide a declarative interface to software that stores and retrieves information efficiently
- Distributed systems provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:

Systems research enables the development of applications by defining and implementing abstractions:

- Operating systems provide a stable, consistent interface to unreliable, inconsistent hardware
- Networks provide a robust data transfer interface to constantly evolving communications infrastructure
- Databases provide a declarative interface to software that stores and retrieves information efficiently
- Distributed systems provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:

Hide complexity, but retain flexibility

The Unix Operating System	
	5

The Unix Operating Sy	/stem
-----------------------	-------

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

- Portability: The same operating system on different hardware.
- •Multi-Tasking: Many processes run concurrently on a machine.

- Portability: The same operating system on different hardware.
- •Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.

- Portability: The same operating system on different hardware.
- •Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

Essential features of the Unix operating system (and variants):

- Portability: The same operating system on different hardware.
- •Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.

Essential features of the Unix operating system (and variants):

- Portability: The same operating system on different hardware.
- Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.

Essential features of the Unix operating system (and variants):

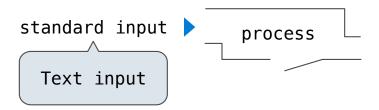
- Portability: The same operating system on different hardware.
- Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.

Essential features of the Unix operating system (and variants):

- Portability: The same operating system on different hardware.
- Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

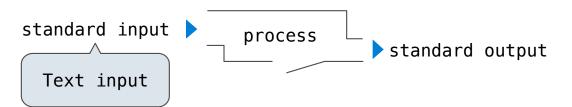
"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.



Essential features of the Unix operating system (and variants):

- Portability: The same operating system on different hardware.
- •Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

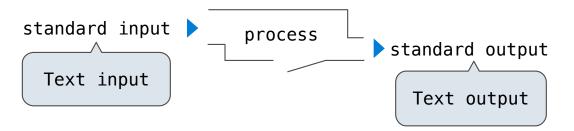
"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.



Essential features of the Unix operating system (and variants):

- Portability: The same operating system on different hardware.
- Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

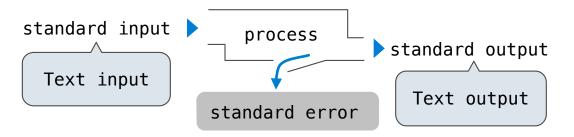
"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.



Essential features of the Unix operating system (and variants):

- Portability: The same operating system on different hardware.
- Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

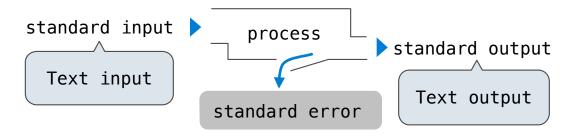
"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.



Essential features of the Unix operating system (and variants):

- Portability: The same operating system on different hardware.
- •Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.

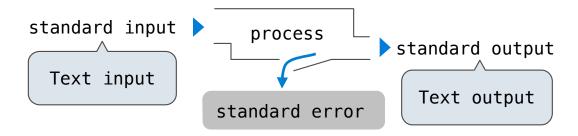


The standard streams in a Unix-like operating system are similar to Python iterators.

Essential features of the Unix operating system (and variants):

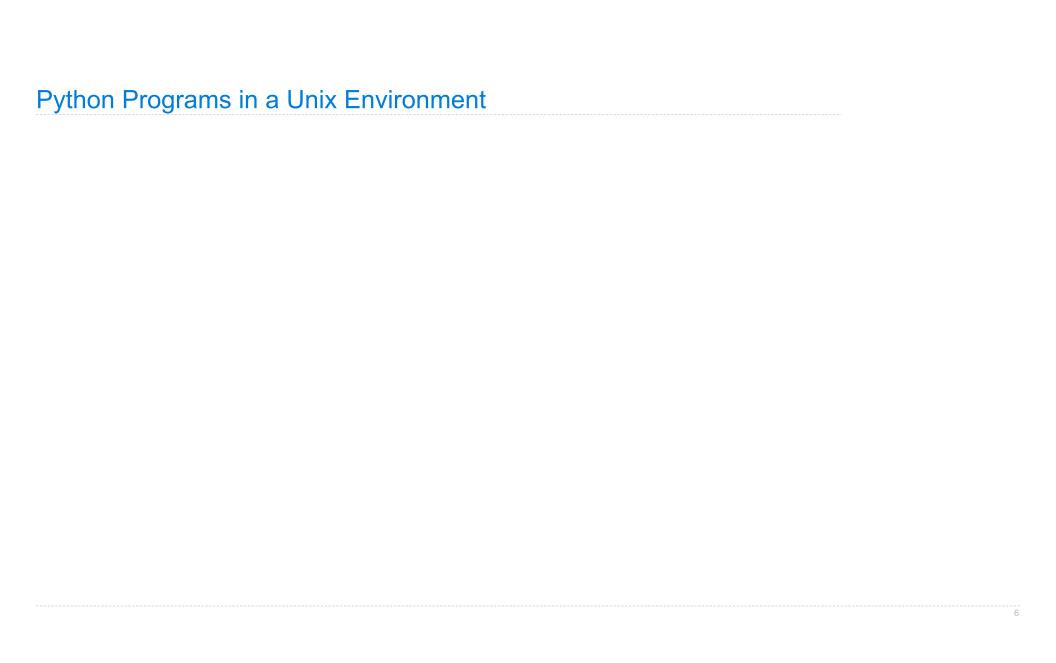
- Portability: The same operating system on different hardware.
- •Multi-Tasking: Many processes run concurrently on a machine.
- Plain Text: Data is stored and shared in text format.
- Modularity: Small tools are composed flexibly via pipes.

"We should have some ways of coupling programs like [a] garden hose — screw in another segment when it becomes necessary to massage data in another way," Doug McIlroy in 1964.



The standard streams in a Unix-like operating system are similar to Python iterators.

(Demo)



The built-in **input** function reads a line from standard input

The built-in **input** function reads a line from standard input

The built-in **print** function writes a line to standard output

The built-in **input** function reads a line from standard input

The built-in **print** function writes a line to standard output

(Demo)

The built-in **input** function reads a line from standard input

The built-in **print** function writes a line to standard output

(Demo)

The sys.stdin and sys.stdout values provide access to the Unix standard streams as files

The built-in **input** function reads a line from standard input

The built-in **print** function writes a line to standard output

(Demo)

The **sys.stdin** and **sys.stdout** values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, **read**, and **write** methods

The built-in **input** function reads a line from standard input

The built-in **print** function writes a line to standard output

(Demo)

The **sys.stdin** and **sys.stdout** values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, **read**, and **write** methods

Using these "files" takes advantage of the operating system text processing abstraction

The built-in **input** function reads a line from standard input

The built-in **print** function writes a line to standard output

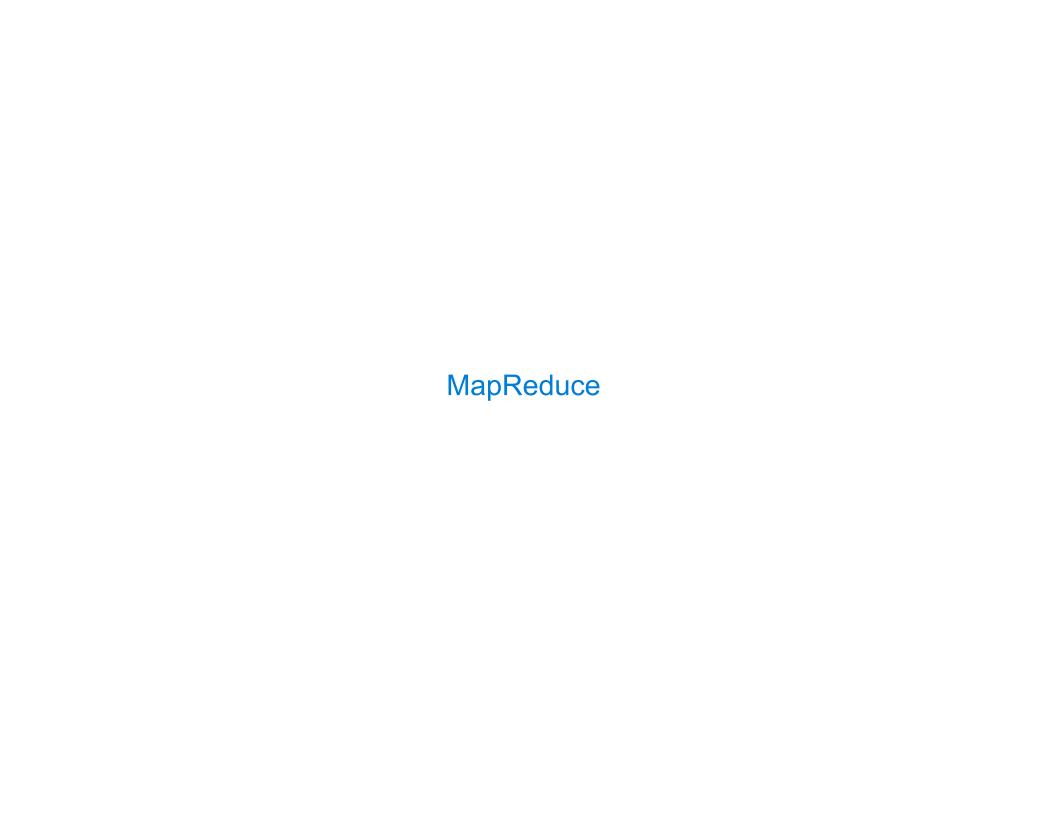
(Demo)

The **sys.stdin** and **sys.stdout** values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, **read**, and **write** methods

Using these "files" takes advantage of the operating system text processing abstraction

(Demo)



Big Data Processing	

MapReduce is a framework for batch processing of big data.

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

MapReduce is a framework for batch processing of big data.

- Framework: A system used by programmers to build applications
- •Batch processing: All the data is available at the outset, and results aren't used until processing completes

MapReduce is a framework for batch processing of big data.

- Framework: A system used by programmers to build applications
- Batch processing: All the data is available at the outset, and results aren't used until processing completes
- •Big data: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

MapReduce is a framework for batch processing of big data.

- Framework: A system used by programmers to build applications
- Batch processing: All the data is available at the outset, and results aren't used until processing completes
- Big data: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

MapReduce is a framework for batch processing of big data.

- Framework: A system used by programmers to build applications
- Batch processing: All the data is available at the outset, and results aren't used until processing completes
- Big data: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

Data sets are too big to be analyzed by one machine

MapReduce is a framework for batch processing of big data.

- Framework: A system used by programmers to build applications
- Batch processing: All the data is available at the outset, and results aren't used until
 processing completes
- Big data: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

- Data sets are too big to be analyzed by one machine
- Using multiple machines has the same complications, regardless of the application/analysis

MapReduce is a framework for batch processing of big data.

- Framework: A system used by programmers to build applications
- Batch processing: All the data is available at the outset, and results aren't used until processing completes
- Big data: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

- Data sets are too big to be analyzed by one machine
- •Using multiple machines has the same complications, regardless of the application/analysis
- Pure functions enable an abstraction barrier between data processing logic and coordinating a distributed application

MapReduce is a framework for batch processing of big data.

- Framework: A system used by programmers to build applications
- Batch processing: All the data is available at the outset, and results aren't used until
 processing completes
- Big data: Used to describe data sets so large and comprehensive that they can reveal facts about a whole population, usually from statistical analysis

The MapReduce idea:

- Data sets are too big to be analyzed by one machine
- Using multiple machines has the same complications, regardless of the application/analysis
- Pure functions enable an abstraction barrier between data processing logic and coordinating a distributed application

(Demo)

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs
•The mapper takes an iterable value containing inputs, such as lines of text

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- •The mapper yields zero or more key-value pairs for each input

Google MapReduce Is a Big Data framework For batch processing

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

mapper

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

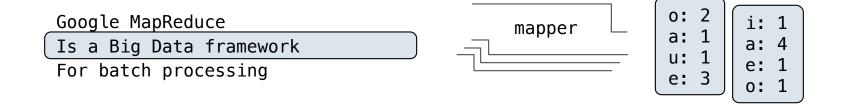
- The mapper takes an iterable value containing inputs, such as lines of text
- •The mapper yields zero or more key-value pairs for each input

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

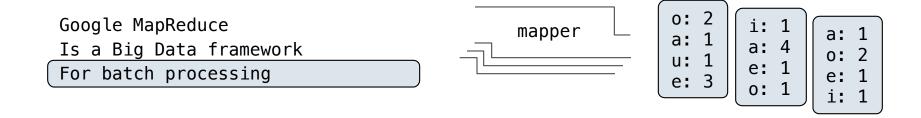
Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- •The mapper yields zero or more key-value pairs for each input



Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

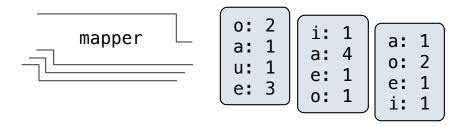
- The mapper takes an iterable value containing inputs, such as lines of text
- •The mapper yields zero or more key-value pairs for each input



Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- •The mapper yields zero or more key-value pairs for each input

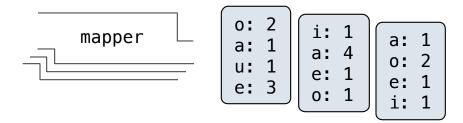
Google MapReduce
Is a Big Data framework
For batch processing



Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

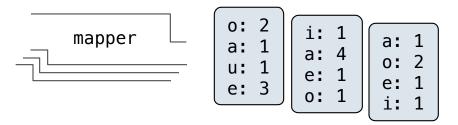


Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing



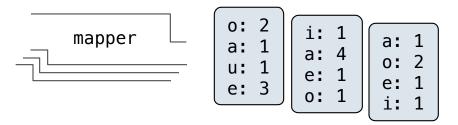
Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing



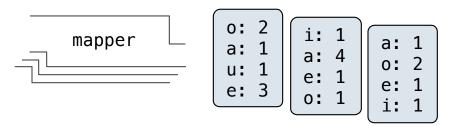
Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- •All pairs with the same key appear consecutively

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

- The mapper takes an iterable value containing inputs, such as lines of text
- The mapper yields zero or more key-value pairs for each input

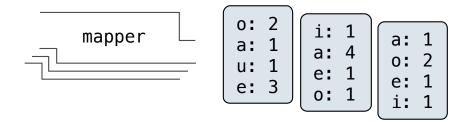
Google MapReduce
Is a Big Data framework
For batch processing



Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- •All pairs with the same key appear consecutively
- •The reducer yields zero or more values, each associated with that intermediate key

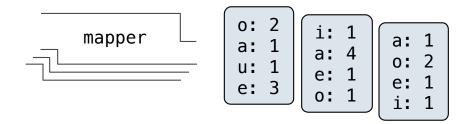
Google MapReduce
Is a Big Data framework
For batch processing



Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key

Google MapReduce
Is a Big Data framework
For batch processing

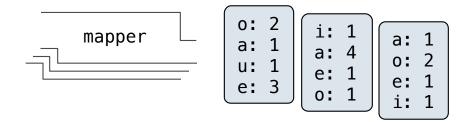


Reduce phase: For each intermediate key, apply a *reducer* function to accumulate all values associated with that key

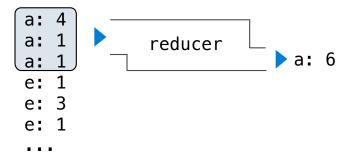
- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key
 - a: 4
 - a: 1
 - a: 1
 - e: 1
 - e: 3
 - e: 1

• • •

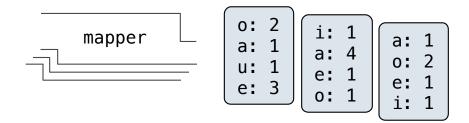
Google MapReduce
Is a Big Data framework
For batch processing



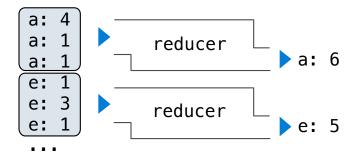
- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key



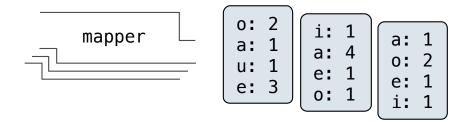
Google MapReduce
Is a Big Data framework
For batch processing



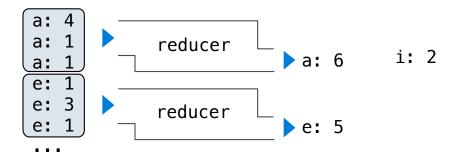
- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key



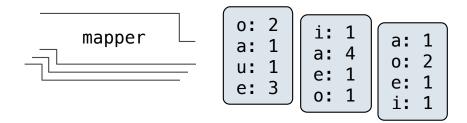
Google MapReduce
Is a Big Data framework
For batch processing



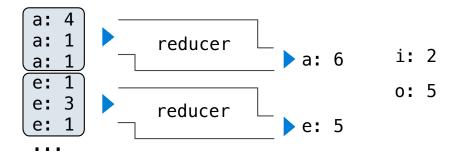
- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key



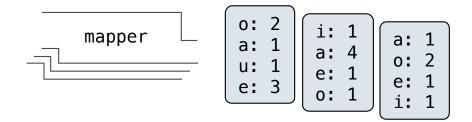
Google MapReduce
Is a Big Data framework
For batch processing



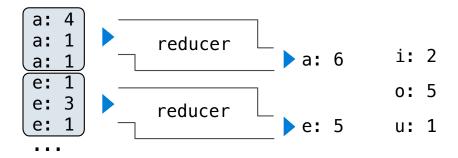
- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key



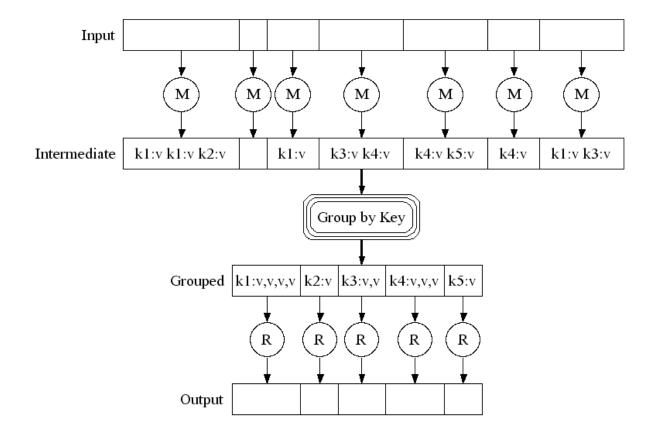
Google MapReduce
Is a Big Data framework
For batch processing



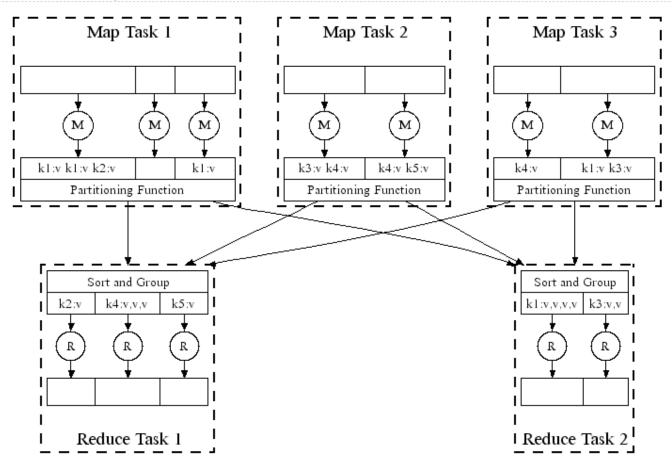
- The reducer takes an iterable value containing intermediate key-value pairs
- All pairs with the same key appear consecutively
- The reducer yields zero or more values, each associated with that intermediate key



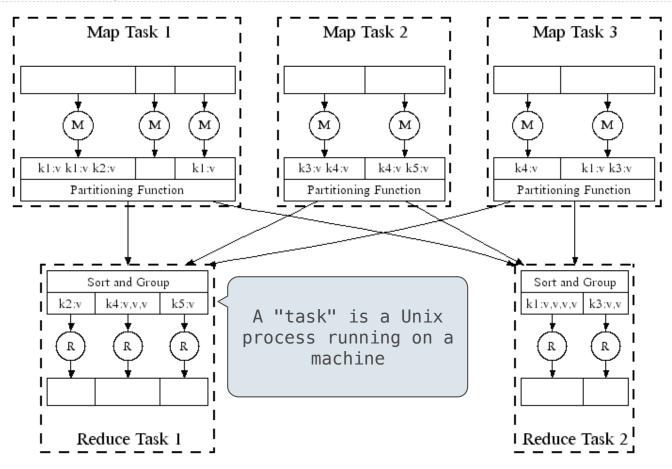
Execution Model



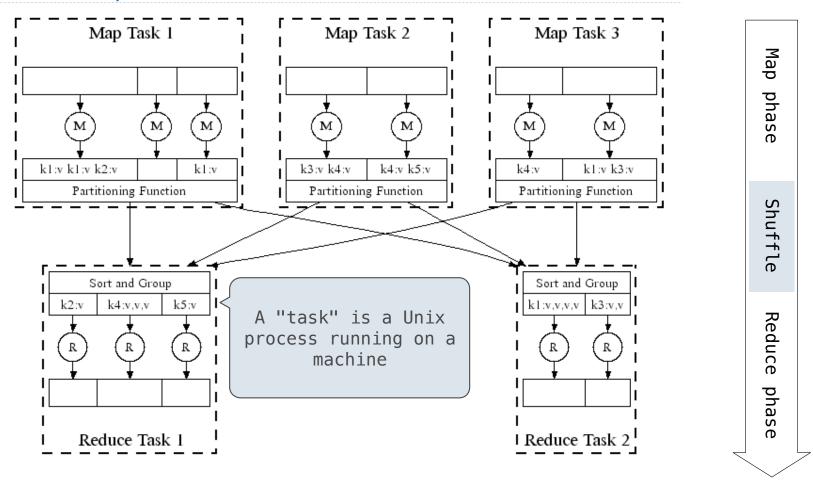
Parallel Execution Implementation



Parallel Execution Implementation



Parallel Execution Implementation



Map phase

Reduce phase

Constraints on the *mapper* and *reducer*:

Map phase

Constraints on the *mapper* and *reducer*:

•The mapper must be equivalent to applying a deterministic pure function to each input independently

Map phase

MapReduce Assumptions

Constraints on the mapper and reducer:

- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Constraints on the mapper and reducer:

- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

Constraints on the mapper and reducer:

- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

 When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel

Constraints on the mapper and reducer:

- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

- When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
- Referential transparency: a call expression can be replaced by its value (or vis versa) without changing the program

Constraints on the mapper and reducer:

- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

- When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
- Referential transparency: a call expression can be replaced by its value (or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

Constraints on the mapper and reducer:

- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

- When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
- Referential transparency: a call expression can be replaced by its value (or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

Consistent results, however computation is partitioned

Constraints on the mapper and reducer:

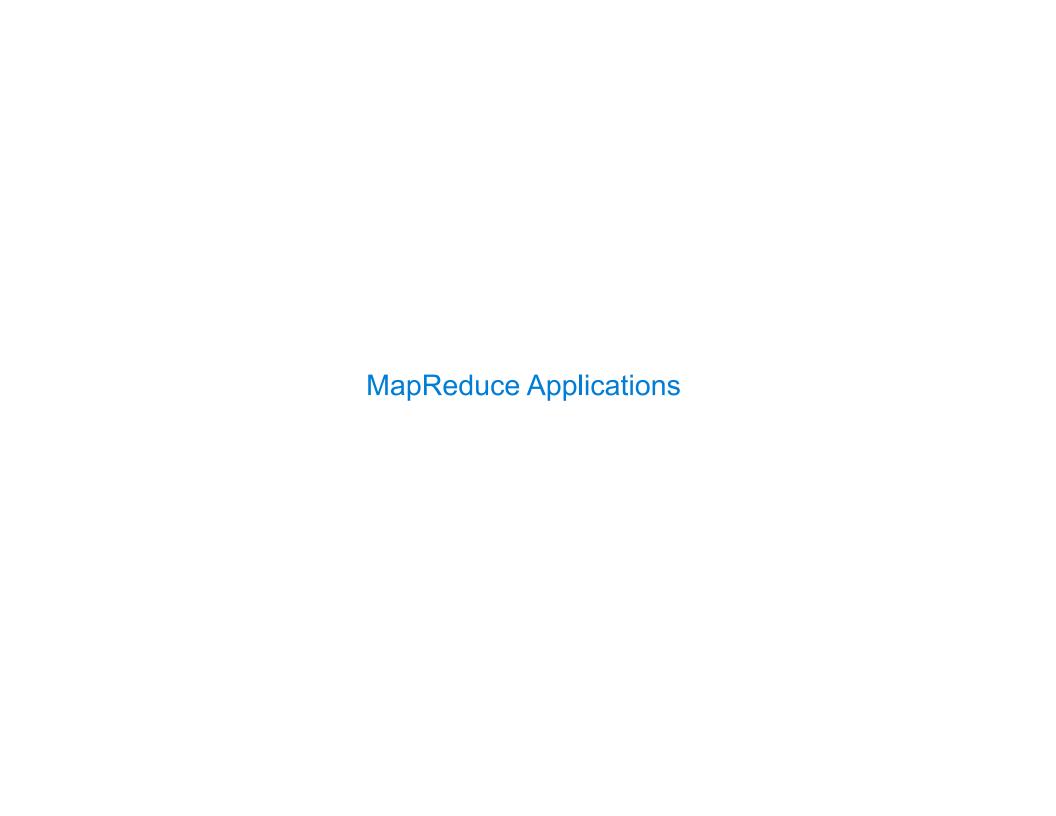
- The mapper must be equivalent to applying a deterministic pure function to each input independently
- The reducer must be equivalent to applying a deterministic pure function to the sequence of values for each key

Benefits of functional programming:

- When a program contains only pure functions, call expressions can be evaluated in any order, lazily, and in parallel
- Referential transparency: a call expression can be replaced by its value (or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

- Consistent results, however computation is partitioned
- Re-computation and caching of results, as needed



Python Example of a MapReduce Application	Pyt	hon	Exam	ple	of a	a Ma	pRe	duce	Ap	plica	tior
---	-----	-----	------	-----	------	------	-----	------	----	-------	------

The *mapper* and *reducer* are both self-contained Python programs

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

Mapper

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

Mapper

```
def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

Mapper

```
#!/usr/bin/env python3
import sys
from mr import emit

def emit_vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
```

```
Mapper
                          Tell Unix: This is Python 3 code
#!/usr/bin/env python3.
import sys
                        The emit function outputs a key
from mr import emit ≪
                         and value as a line of text to
                                 standard output
def emit vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
                         Mapper inputs are lines of text
for line in sys.stdin: -
                            provided to standard input
    emit vowels(line)
```

```
Mapper
                          Tell Unix: This is Python 3 code
#!/usr/bin/env python3.
import sys
                        The emit function outputs a key
from mr import emit ≪
                         and value as a line of text to
                                 standard output
def emit vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
                         Mapper inputs are lines of text
for line in sys.stdin: -
                            provided to standard input
    emit vowels(line)
```

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

```
Mapper
                          Tell Unix: This is Python 3 code
#!/usr/bin/env python3.
import sys
                        The emit function outputs a key
from mr import emit ≪
                         and value as a line of text to
                                 standard output
def emit vowels(line):
    for vowel in 'aeiou':
        count = line.count(vowel)
        if count > 0:
            emit(vowel, count)
                         Mapper inputs are lines of text
for line in sys.stdin: <
                            provided to standard input
    emit vowels(line)
```

(Demo)

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

Reducer

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

Reducer

#!/usr/bin/env python3

import sys
from mr import emit, values_by_key

The *mapper* and *reducer* are both self-contained Python programs

They read from standard input and write to standard output

Reducer

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

They read from standard input and write to standard output

Reducer

Python Example of a MapReduce Application

The *mapper* and *reducer* are both self-contained Python programs

• They read from standard input and write to standard output

Reducer

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

They read from standard input and write to standard output

Reducer

(Demo)

What Does the MapReduce Framework Provide	
	19
	19

Fault tolerance: A machine or hard drive might crash

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

 The framework can run multiple copies of a task and keep the result of the one that finishes first

19

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

 The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive

Fault tolerance: A machine or hard drive might crash

The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

 The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive

 The framework tries to schedule map tasks on the machines that hold the data to be processed

Fault tolerance: A machine or hard drive might crash

The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

 The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive

 The framework tries to schedule map tasks on the machines that hold the data to be processed

Monitoring: Will my job finish before dinner?!?

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

 The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive

 The framework tries to schedule map tasks on the machines that hold the data to be processed

Monitoring: Will my job finish before dinner?!?

The framework provides a web-based interface describing jobs

Fault tolerance: A machine or hard drive might crash

The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

 The framework can run multiple copies of a task and keep the result of the one that finishes first

Network locality: Data transfer is expensive

 The framework tries to schedule map tasks on the machines that hold the data to be processed

Monitoring: Will my job finish before dinner?!?

The framework provides a web-based interface describing jobs

(Demo)