
61A Lecture 36

Monday, December 1

Announcements

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

!Ask homework questions in lab; both lab and homework are about SQL

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

!Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

!Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

• No videos for Lecture 38 on Friday 12/5

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

!Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

• No videos for Lecture 38 on Friday 12/5

!Come to class and take the final survey

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

!Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

• No videos for Lecture 38 on Friday 12/5

!Come to class and take the final survey

!There will be a screencast of live lecture (as always)

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

!Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

• No videos for Lecture 38 on Friday 12/5

!Come to class and take the final survey

!There will be a screencast of live lecture (as always)

!Screencasts: http://goo.gl/hyUTca

2

Announcements

• Recursive art contest entries due Monday 12/1 @ 11:59pm (new submission instructions)

• Homework 10 due Wednesday 12/3 @ 11:59pm

!Homework Party Monday 6pm-8pm in 2050 VLSB

!Ask homework questions in lab; both lab and homework are about SQL

• Quiz 3 released Wednesday, due Thursday 12/4 @ 11:59pm

• No videos for Lecture 38 on Friday 12/5

!Come to class and take the final survey

!There will be a screencast of live lecture (as always)

!Screencasts: http://goo.gl/hyUTca

• Final exam held on Thursday 12/18 3pm-6pm (review info later this week)

2

Unix

Computer Systems

4

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

4

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

• Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

4

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

• Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

• Networks provide a robust data transfer interface to constantly evolving communications
infrastructure

4

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

• Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

• Networks provide a robust data transfer interface to constantly evolving communications
infrastructure

• Databases provide a declarative interface to software that stores and retrieves information
efficiently

4

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

• Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

• Networks provide a robust data transfer interface to constantly evolving communications
infrastructure

• Databases provide a declarative interface to software that stores and retrieves information
efficiently

• Distributed systems provide a unified interface to a cluster of multiple machines

4

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

• Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

• Networks provide a robust data transfer interface to constantly evolving communications
infrastructure

• Databases provide a declarative interface to software that stores and retrieves information
efficiently

• Distributed systems provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:

4

Computer Systems

Systems research enables the development of applications by defining and implementing
abstractions:

• Operating systems provide a stable, consistent interface to unreliable, inconsistent
hardware

• Networks provide a robust data transfer interface to constantly evolving communications
infrastructure

• Databases provide a declarative interface to software that stores and retrieves information
efficiently

• Distributed systems provide a unified interface to a cluster of multiple machines

A unifying property of effective systems:

4

Hide complexity, but retain flexibility

The Unix Operating System

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

process

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input process

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input process

Text input

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input
standard output

process

Text input

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input
standard output

process

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input
standard output

process

standard error

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix-like operating system are similar to Python iterators.

5

standard input
standard output

process

standard error

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix-like operating system are similar to Python iterators.

5

standard input
standard output

process

standard error

Text input
Text output

(Demo)

ls hw* | grep -v html | cut -f 1 -d '.' | cut -c 3- | sort -n

Python Programs in a Unix Environment

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

(Demo)

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

(Demo)

6

The sys.stdin and sys.stdout values provide access to the Unix standard streams as files

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

(Demo)

6

The sys.stdin and sys.stdout values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, read, and write methods

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

(Demo)

6

The sys.stdin and sys.stdout values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, read, and write methods

Using these "files" takes advantage of the operating system text processing abstraction

Python Programs in a Unix Environment

The built-in input function reads a line from standard input

The built-in print function writes a line to standard output

(Demo)

(Demo)

6

The sys.stdin and sys.stdout values provide access to the Unix standard streams as files

A Python file has an interface that supports iteration, read, and write methods

Using these "files" takes advantage of the operating system text processing abstraction

MapReduce

Big Data Processing

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

• Big data: Used to describe data sets so large and comprehensive that they can reveal facts
about a whole population, usually from statistical analysis

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

• Big data: Used to describe data sets so large and comprehensive that they can reveal facts
about a whole population, usually from statistical analysis

The MapReduce idea:

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

• Big data: Used to describe data sets so large and comprehensive that they can reveal facts
about a whole population, usually from statistical analysis

The MapReduce idea:

• Data sets are too big to be analyzed by one machine

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

• Big data: Used to describe data sets so large and comprehensive that they can reveal facts
about a whole population, usually from statistical analysis

The MapReduce idea:

• Data sets are too big to be analyzed by one machine

• Using multiple machines has the same complications, regardless of the application/analysis

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

• Big data: Used to describe data sets so large and comprehensive that they can reveal facts
about a whole population, usually from statistical analysis

The MapReduce idea:

• Data sets are too big to be analyzed by one machine

• Using multiple machines has the same complications, regardless of the application/analysis

• Pure functions enable an abstraction barrier between data processing logic and coordinating
a distributed application

8

Big Data Processing

MapReduce is a framework for batch processing of big data.

• Framework: A system used by programmers to build applications

• Batch processing: All the data is available at the outset, and results aren't used until
processing completes

• Big data: Used to describe data sets so large and comprehensive that they can reveal facts
about a whole population, usually from statistical analysis

The MapReduce idea:

• Data sets are too big to be analyzed by one machine

• Using multiple machines has the same complications, regardless of the application/analysis

• Pure functions enable an abstraction barrier between data processing logic and coordinating
a distributed application

(Demo)

8

MapReduce Evaluation Model

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

Google MapReduce
Is a Big Data framework
For batch processing

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to all inputs, emitting intermediate key-value pairs

• The mapper takes an iterable value containing inputs, such as lines of text

• The mapper yields zero or more key-value pairs for each input

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

u: 1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key

• The reducer takes an iterable value containing intermediate key-value pairs

• All pairs with the same key appear consecutively

• The reducer yields zero or more values, each associated with that intermediate key

10

MapReduce Execution Model

Execution Model

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html
12

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html
13

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a Unix
process running on a

machine

13

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a Unix
process running on a

machine

Map phase
Reduce phase

Shuffle

13

MapReduce Assumptions

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned

• Re-computation and caching of results, as needed

14

Map phase
Reduce phase

Shuffle

MapReduce Applications

Python Example of a MapReduce Application

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

Mapper

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper
Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Mapper inputs are lines of text
provided to standard input

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Mapper inputs are lines of text
provided to standard input

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Mapper inputs are lines of text
provided to standard input

Tell Unix: This is Python 3 code

16

(Demo)

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

Reducer

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit, values_by_key

Reducer

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit, values_by_key

Reducer

Takes and returns iterators

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit, values_by_key

Reducer

Takes and returns iterators

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all

values for each key

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit, values_by_key

Reducer

for key, value_iterator in values_by_key(sys.stdin):
 emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all

values for each key

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs

• They read from standard input and write to standard output

#!/usr/bin/env python3
!
import sys
from mr import emit, values_by_key

Reducer

for key, value_iterator in values_by_key(sys.stdin):
 emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all

values for each key

17

(Demo)

MapReduce Benefits

What Does the MapReduce Framework Provide

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

• The framework can run multiple copies of a task and keep the result of the one that
finishes first

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

• The framework can run multiple copies of a task and keep the result of the one that
finishes first

Network locality: Data transfer is expensive

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

• The framework can run multiple copies of a task and keep the result of the one that
finishes first

Network locality: Data transfer is expensive

• The framework tries to schedule map tasks on the machines that hold the data to be
processed

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

• The framework can run multiple copies of a task and keep the result of the one that
finishes first

Network locality: Data transfer is expensive

• The framework tries to schedule map tasks on the machines that hold the data to be
processed

Monitoring: Will my job finish before dinner?!?

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

• The framework can run multiple copies of a task and keep the result of the one that
finishes first

Network locality: Data transfer is expensive

• The framework tries to schedule map tasks on the machines that hold the data to be
processed

Monitoring: Will my job finish before dinner?!?

• The framework provides a web-based interface describing jobs

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash

• The MapReduce framework automatically re-runs failed tasks

Speed: Some machine might be slow because it's overloaded

• The framework can run multiple copies of a task and keep the result of the one that
finishes first

Network locality: Data transfer is expensive

• The framework tries to schedule map tasks on the machines that hold the data to be
processed

Monitoring: Will my job finish before dinner?!?

• The framework provides a web-based interface describing jobs

(Demo)

19

