
CONTROL AND HIGHER ORDER FUNCTIONS 2
COMPUTER SCIENCE 61A

September 11, 2014

1 Control

Control structures direct the flow of logic in a program. This can mean skipping a portion
of code (conditionals) or repeating a portion of code multiple times (iteration).

1.1 Conditional Statements

Conditional statements let programs execute different lines of code depending certain
conditions. The conditional statement in Python is an if-elif-else block:

if <conditional expression>:
<suite of statements>

elif <conditional expression>:
<suite of statements>

else:
<suite of statements>

Some notes:

• The else and elif statements are optional.

• You can have any number of elif statements.

• A conditional expression is a Python expression. All that matters for control is
whether its value is a true value or a false value.

• The code that is executed is the suite that is indented under the first if/elif that
has a true conditional expression. If none are true, then the else suite is executed.

• Once one suite is executed, the rest are skipped.

1



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 2
Note: in Python, there are a few things that are treated as false values:

• The boolean False

• The integer 0

• The value None

• And more... (we will learn about these later in the semester)
Python also includes boolean operators and, or, and not. These operators are used to
combine and manipulate boolean values.

• not True evaluates to False, and not False evaluates to True.

• True and True evaluates to True, but a false value on either side makes it False.

• False or False evaluates to False, but a true value on either side makes it True.
1.2 Question

1. It’s lecture time! However, whether you go depends on certain conditions about tim-
ing, seats, and laziness. Write a simple function which lecture that takes in inputs
time, seats left, is lazy and prints out your decision.

• which lecture should print "go to lecture" if time is before 2:00pm, there
are seats, and you are not lazy.

• which lecture should print "go to alt lecture" if time is after 2:00pm or
there are no seats, and you are not lazy.

• which lecture should print "watch videos" if you feel lazy.
time is in military format; e.g 2:20pm is 1420. seats left is a non-negative integer.
is lazy is a boolean variable.
def which_lecture(time, seats_left, is_lazy):

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 3
1.3 Iteration

Iteration lets a program repeat statements multiple times. A common iterative block of
code is the while loop:

while <conditional clause>:
<body of statements>

This block of code states: “while the conditional clause is still True, continue executing
the indented body of statements.” Here is an example:

>>> def countdown(x):
... while x > 0:
... print(x)
... x = x - 1
... print("Blastoff!")
...
>>> countdown(3)
3
2
1
Blastoff!

1.4 Questions

1. Fill in the is prime function, which returns True if n is a prime number and False
otherwise.

Hint: use the % operator: x % y returns the remainder of x is divided by y.

def is_prime(n):

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 4
2. Fill in the choose function, which returns the number of ways to choose k items from
n items. Mathematically, choose(n,k) is defined as:

n× (n− 1)× (n− 2)× · · · × (n− k + 1)

k × (k − 1)× (k − 2)× · · · × 2× 1

def choose(n, k):
"""Returns the number of ways to choose K items from

N items.

>>> choose(5, 2)
10
>>> choose(20, 6)
38760
"""

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 5

2 Higher Order Functions

A function that manipulates other functions is called a higher order function (HOF). A HOF
can be a function that takes functions as arguments, returns a function, or both.

2.1 Functions as Argument Values

Suppose we want to square or double every natural number from 1 to n and print the result
as we go. Fill in the functions square every number and double every number by
using the square and double functions we have defined.

def square(x):
return x * x

def square_every_number(n):
"""Prints out the square of every integer from 1 to n.
>>> square_every_number(3)
1
4
9
"""

def double(x):
return 2 * x

def double_every_number(n):
"""Prints out the double of every integer from 1 to n.
>>> double_every_number(3)
2
4
6
"""

The only difference between square every number and double every number is the
function called before printing (either square or double). Everything else is the same!

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 6
It would be nice to have a generalized function (let’s call it the every function) that took
care of the while loop and the incrementing for us. That way, we could triple every number
or cube every number without repeating so much code:

def square_every_number(n):
every(square, n)

def double_every_number(n):
every(double, n)

def cube(x):
return x * x * x

def cube_every_number(n):
every(cube, n)

2.2 Questions

1. Implement the function every that takes in a function func and a number n, and
prints the result of applying that function to each of the first n natural numbers.

def every(func, n):
"""Prints out all integers from 1 to n with func applied
on them.

>>> def square(x):
... return x * x
>>> every(square, 3)
1
4
9
"""

2. Similarly, implement a function keep, which takes in a function cond and a number
n, and only prints a number from 1 to n to the screen if calling cond on that number
returns True:

def keep(cond, n):

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 7
"""Prints out all integers from 1 to n that return True
when called with cond.

>>> def is_even(x):
... # Even numbers have remainder 0 when divided by 2.
... return x % 2 == 0
>>> keep(is_even, 5)
2
4
"""

2.3 Functions as Return Values

Often, we will need to write a function that returns another function. One way to do this
is to define a function inside of a function:

def outer(x):
def inner(y):

...
return inner

Note two things:

1. The return value of the outer function is inner! This is where a function returns a
function.

2. In this case, the inner function is defined inside of the outer function. This is a
common pattern, but it is not necessary — we could have defined inner outside of
the outer and still keep the return statement the same.

2.4 Moar Questions

1. Write a function and add that takes a function f (such that f is a function of one
argument) and a number n as arguments. It should return a function that takes one
argument, and does the same thing as the function f, except also adds n to the result.

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 8
def and_add(f, n):

"""Returns a new function. This new function takes an
argument

x and returns f(x) + n.

>>> def square(x):
... return x * x
>>> new_square = and_add(square, 3)
>>> new_square(4) # 4 * 4 + 3
19
"""

2. The following code has been loaded into the python interpreter:

def skipped(f):
def g():

return f
return g

def composed(f, g):
def h(x):

return f(g(x))
return h

def added(f, g):
def h(x):

return f(x) + g(x)
return h

def square(x):
return x*x

def two(x):
return 2

What will python output when the following lines are evaluated?

>>> composed(square, two)(7)

>>> skipped(added(square, two))()(3)

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 9
>>> composed(two, square)(2)

3. Draw the environment diagram that results from running the following code.

n = 7
def f(x):

n = 8
return x + 1

def g(x):
n = 9
return x + 3

def f(f, x):
return f(f(x+2))

m = f(g, n)

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 2: CONTROL AND HIGHER ORDER FUNCTIONS Page 10
4. Draw the environment diagram for the following code:

from operator import add
def curry2(h):

def f(x):
def g(y):

return h(x,y)
return g

return f

make_adder = curry2(add)
add_three = make_adder(3)
five = add_three(2)

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang


