
SEQUENCES AND TREES 5
COMPUTER SCIENCE 61A

October 2, 2014

1 List Comprehension

List comprehensions are a compact way of applying operations to a sequence. The basic
format of a list comprehension is:

[<map exp> for <name> in <iter exp> if <filter exp>]

Let’s break down an example of a list comprehension:

[x * x - 3 for x in [1, 2, 3, 4, 5] if x % 2 == 1]

In this list comprehension, we are creating a new list after performing a series of opera-
tions to our initial sequence [1, 2, 3, 4, 5]. We only keep the elements that satisfy
the filter expression x % 2 == 1 (in this case the elements 1, 3, and 5). For each element
that we keep, we want to apply the map expression x*x - 3 before adding it to the new
list that we are creating, resulting in an output list: [-2, 6, 22]

Note: The if clause in a list comprehension is optional.

1.1 Questions

1. What would Python print?

>>> [i + 1 for i in [1, 2, 3, 4, 5] if i % 2 == 0]

>>> [(lambda j: j * j)(2 * i) for i in [5, -1, 3, -1, 3] if i
> 2]

>>> [[y * 2 for y in [x, x + 1]] for x in [1, 2, 3, 4]]

1



DISCUSSION 5: SEQUENCES AND TREES Page 2

2. Define a function foo that takes in a list lst and returns a new list that keeps only
the even-indexed elements of lst and multiples each of those elements by the corre-
sponding index.

def foo(lst):
"""
>>> x = [1, 2, 3, 4, 5, 6]
>>> foo(x)
[0, 6, 20]
"""

return [__________________________________________________
]

2 Trees

In computer science, trees are recursive data structures that are widely used in various
settings. This is a diagram of a simple tree.

7

1

3

2

−4 0

8

6

11

16

17

19

20

Notice that the tree branches downward – in computer science, the root of a tree starts at
the top, and the leaves are at the bottom.

Some terminology regarding trees:

• Parent node: A node that has children. Parent nodes can have multiple children.

• Child node: A node that has a parent. A child node can only belong to one parent.

• Root: The top node. There is only one root. Because every other node branches
directly or indirectly from the root, it is possible to start from the root and reach any
other node in the tree. The root is, of course, a parent — it is the only node that is not
a child. For example, the node that contains the 7 at the top is the root.

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 3
• Leaf: Nodes that have no children. For example, the nodes that contain the bottom
−4, 0, 6, 17, and 20 are leaves. The node that contains 19 is not a leaf, since it has one
child.

• Subtree: Notice that each child of a parent is itself the root of a smaller tree (for
example, the node containing 1 is the root of another tree). This is why trees are
recursive data structures: trees are made up of subtrees, which are trees themselves.

• Depth: How far away a node is from the root. In other words, how many generations
away from the root is the specific child node? In the diagram, the node containing 19
has depth 1; the node containing 3 has depth 2. We define the root of a tree to have
depth 0.

• Height: The depth of the lowest leaf. In the diagram, the nodes containing −4, 0, 6,
and 17 are all the “lowest leaves,” and they have depth 4. Thus, the entire tree has
height 4.

In computer science, there are many different types of trees – some vary in the number of
children each node has, and others vary in the structure of the tree.

2.1 Our Implementation

In this class, we represent a tree as a nested sequence. A tree is a sequence of trees or a
non-sequence value, called a leaf. For example, consider the following tree with 6 integer
leaves:

tree = [1, [2], [[4, 5], 3, [6]]]

We can visualize this tree with a box-and-pointer diagram, or as a tree shown below. Note
that unlike the tree we’ve seen earlier, this representation of a tree only stores values at its
leaves.

6

3

54

2

1

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 4
When a tree is a sequence, each element in the sequence is called a branch of the tree.
Each branch is itself a tree, according to our definition. For now, we will assume a that
trees are lists and leaves are non-lists.

def is_leaf(tree):
return type(tree) != list

Many of the common patterns we have found for processing sequences also apply to trees.
For instance, the function apply to leaves is similar to apply to all, but recursively
applies a function only to the leaves of a tree, creating another tree as a result.

def apply_to_leaves(map_fn, tree):
"""Apply map_fn to all leaves of tree,
constructing another tree."""
if is_leaf(tree):

return map_fn(tree)
else:

return [apply_to_leaves(map_fn, branch)
for branch in tree]

2.2 Questions

1. Define a function square tree(tree) that uses apply to leaves to square every
item in tree. You can assume that every item is a number.

def square_tree(tree):
"""Returns a tree containing integers by squaring all of
TREE’s elements
>>> square_tree([1, [2, [3]], 4])
[1, [4, [9]], 16]
"""

return apply_to_leaves(______________________, ________)

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 5
2. Define a function height(tree) that returns the height of a tree. The height of a

Tree is defined as the length of the longest path from the root node down to a leaf
node. In our representation of trees as a nested sequence, the height is the highest
level of nesting.

If it helps, there is a Python built-in function max that takes an arbitrarily long se-
quence of numbers and returns the maximum value in the sequence.

def height(tree):
"""Returns the height of a tree
>>> height(1)
0
>>> height([1])
1
>>> height([1, [2, [3]], [4, [5]]])
3
"""

3. In linguistics, sentences are parsed according to a grammar into a tree, such as the one
below. Write a function join, which takes in a tree consisting of strings in its leaves
and turns it back into a sentence.

S

VP

PP

NP

N

mat

Det

the

P

on

V

sat

NP

N

cat

Det

the

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 6
def join(tree):

""" Joins a tree containing strings as leaves into a
sentence.
>>> join(’hi’)
’hi’
>>> join([’hello’, ’ ’, ’world’])
’hello world’
>>> join([[’the’, ’cat’], [’sat’, [’on’, [’the’, ’mat

’]]]])
’thecatsatonthemat’
"""

4. Define a function search(tree, x) that searches a tree for leaves of value x. search
should return the minimum depth of all such leaves, or False if no leaves are found.

def search(tree, x):
"""Returns the minimum depth of a leaf with value X in
TREE, False if not found.
>>> search([2, [3, 4], [1, [5, [3]]]], 3)
2
>>> search([2, [3, 4], [1, [5, [3]]]], 6)
False
"""

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 7
2.3 Rooted Trees

A rooted tree has both a sequence of branches and a root value. A rooted tree with
no branches is also called a leaf. The data abstraction for a rooted tree consists of the
constructor rooted and the selectors root and branches.

def rooted(value, branches):
return [value] + list(branches)

def root(tree):
return tree[0]

def branches(tree):
return tree[1:]

We introduce convenience methods leaf to create leaves and is rooted leaf to
check if a rooted tree is a leaf.

def leaf(value):
return rooted(value, [])

def is_rooted_leaf(tree):
return branches(tree) == []

>>> t = rooted(1, [leaf(2), leaf(3)])
>>> t
[1, [2], [3]]
>>> root(t)
1
>>> branches(t)
[[2], [3]]

With rooted trees, we can associate any root of a subtree with a value. For example,
the following tree can be represented as a rooted tree:

1

3

4 5 6

2

rooted(1, [rooted(3, [leaf(4), leaf(5), leaf(6)]), leaf(2)])

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 8
5. An expression tree is a rooted tree, containing function for each non-leaf root, which

can be either add or mul. All leaves are numbers. Implement eval tree, which
evaluates an expression tree to its value. You may find the functions reduce and
apply to all, introduced during lecture, useful.

def reduce(fn, s, init):
reduced = init
for x in s:

reduced = fn(reduced, x)
return reduced

def apply_to_all(fn, s):
return [fn(x) for x in s]

from operator import add, mul
def eval_tree(tree):

"""Evaluates an expression tree with functions as root
>>> eval_tree(leaf(1))
1
>>> expr = rooted(mul, [leaf(2), leaf(3)])
>>> eval_tree(expr)
6
>>> eval_tree(rooted(add, [expr, leaf(4)]))
10
"""

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 9
6. We can represent the hailstone sequence as a rooted tree in the figure below, showing

the route different numbers take to reach 1. Remember that a hailstone sequence
starts with a number n, continuing to n/2 if n is even or n ∗ 3 + 1 if n is odd, ending
with 1. Write a function hailstone tree(n, h) which generates a tree of height
h, containing hailstone numbers that will reach n.

1 2 4 8 16
5 10

3
20

32 64
21

128

def hailstone_tree(n, h):
"""Generates a rooted tree of hailstone numbers that
will reach N, with height H.
>>> hailstone_tree(1, 0)
[1]
>>> hailstone_tree(1, 4)
[1, [2, [4, [8, [16]]]]]
>>> hailstone_tree(8, 3)
[8, [16, [32, [64]], [5, [10]]]]
"""

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang



DISCUSSION 5: SEQUENCES AND TREES Page 10
7. Define the procedure find path(tree, x) that, given a rooted tree tree and a

value x, returns a list containing the nodes along the path required to get from the
root of tree to a node x. If x is not present in tree, return False. Assume that the
elements in tree are unique.

For the following tree, find path(t, 5) should return [2, 7, 6, 5]

2

7

3 6

5 11

15

def find_path(tree, x):
""" Returns a path in a tree to a leaf with value X,
False if such a leaf is not present.
>>> r, l = rooted, leaf
>>> t = r(2, [r(7, [l(3), r(6, [l(5), l(11)])]), l(15)])
>>> find_path(t, 5)
[2, 7, 6, 5]
>>> find_path(t, 6)
[2, 7, 6]
>>> find_path(t, 10)
False
"""

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang


