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1 Trees in OOP

1.1 Our Implementation

Previously, we have seen trees defined as an abstract data type using lists. This time, we
will use OOP syntax to define trees. One advantage of using OOP is that specialized tree
types such as binary trees will now be more easily specified via inheritance.

class Tree:
"""A tree with entry as its root value."""
def __init__(self, entry, branches=()):

self.entry = entry
for branch in branches:

assert isinstance(branch, Tree)
self.branches = list(branches)

1.2 Questions

1. Define a function square tree(t) that squares every item in t. You can assume
that every item is a number.

def square_tree(t):
"""Mutates a Tree t by squaring all its elements"""
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2. Define a function make even which takes in a tree of integers, and mutates the tree

such that all the odd numbers are increased by 1 and all the even numbers remain the
same. Then write this function so that it returns a new tree instead.

def make_even(t):
"""
>>> t = Tree(1, [Tree(2, [Tree(3)]), Tree(4), Tree(5)])
>>> make_even(t)
>>> t # Assuming __repr__ is defined
Tree(2, [Tree(2, [Tree(4)]), Tree(4), Tree(6)])
"""

3. Assuming that every item in t is a number, let’s define average(t), which returns
the average of all the items in t.

def average(t):

1.3 Extra Questions

4. Define the procedure find path that, given an Tree t and an entry entry, returns a
list containing the nodes along the path required to get from the root of t to entry.
If entry is not present in t, return False.
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a. Assume that the elements in t are unique. Find the path to an element.

For instance, for the following tree, find path should return:

2

7

3 6

5 11

1

>>> find_path(tree_ex, 5)
[2, 7, 6, 5]

def find_path(t, entry):

b. Now assume that the elements of the tree might not be unique. How would you
change your answer from part a to find the shortest path? Try to implement the
function find shortest, which has the same parameters as find path.

5. In syntax, a way to model question formation is move the question word in the syntax
tree.

S

VP

PP

NP

quién?

P

a

V

escribiste

NP

(Tú)

=⇒

S

VP

NP

(tú)?

V

escribiste

PP

quiénA

Who did you write to?
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a. How would we modify the Tree class so that each node remembers its parent?

b. Now write a method first to last for the Tree class that swaps a tree’s own
first child with the last child of other.

def first_to_last(self, other):

1.4 Binary Trees

Sometimes, it is more practical to assume that there will only be at most two branches per
tree. Since a binary tree is just a specialization of a regular tree, we can use inheritance to
help us with the implementation.

class BinaryTree(Tree):
empty = Tree(None)
empty.is_empty = True

def __init__(self, entry, left=empty, right=empty):
for branch in (left, right):

assert isinstance(branch, BinaryTree) or branch.
is_empty

Tree.__init__(self, entry, (left, right))
self.is_empty = False

@property
def left(self):

return self.branches[0]

@property
def right(self):

return self.branches[1]
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1.5 Conceptual Questions

1. a. What is the purpose of the assert statement in the second line of init ? Why
must we write this line explicitly instead of relying on Tree. init ’s assert?

b. Summarize the process of creating a new BinaryTree. How does Tree. init
contribute?

c. Why do we use @property instead of writing self.left = self.branches[0]
in init ?

2 Orders of Growth

When we talk about the efficiency of a procedure (at least for now), we are often interested
in how much more expensive it is to run the procedure with a larger input. That is, how
do the time a process takes and the space it occupies grow as the size of the input grows?

For expressing all of these, we use what is called the big Theta notation. For example, if
we say the running time of a procedure foo is in Θ(n2), we mean that the running time
of the process, R(n), will grow proportionally to the square of the size of the input n as n
increases to infinity.

Fortunately, in CS 61A, we’re not that concerned with rigorous mathematical proofs.
(You’ll get more details, including big O and big Omega notation, in CS 61B!) What we
want you to develop in CS 61A is the intuition to reason out the orders of growth for
certain procedures.

2.1 Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:

• Θ(1) — constant time takes the same amount of time regardless of input size

• Θ(log n) — logarithmic time

• Θ(n) — linear time

• Θ(n2), Θ(n3), etc. — polynomial time

• Θ(2n) — exponential time (“intractable”; these are really, really horrible)
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2.2 Orders of Growth in Time

“Time” refers to the number of primitive operations completed, such as +, ∗, and assign-
ment. The time it takes for these operations is Θ(1). Consider the following functions:

def double(n): def double_list(lst):
return n * 2 return [double(elem) for elem in lst

]

• double is runs in Θ(1), or constant time because it does the same number of primi-
tive procedures no matter what n is.

• double list runs in Θ(n), where n = len(lst), because a Θ(1) procedure (double)
is repeated n times. As lst becomes larger, so does the runtime for double list.

Here are some general guidelines for orders of growth:

• If the function is recursive or iterative, you can subdivide the problem as seen above:

– Count the number of recursive calls/iterations that will be made, given input n.

– Count how much time it takes to process the input per recursive call/iteration.

The answer is usually the product of the above two, but pay attention to control flow!

• If the function calls helper functions that are not constant-time, you need to take the
orders of growth of the helper functions into consideration.

• We can ignore constant factors. For example, Θ(1000000n) = Θ(n).

• We can also ignore lower-order terms. For example, Θ(n3 + n2 + 4n + 399) = Θ(n3).
This is because the plot for n3 +n2 + 4n+ 399 is similar to n3 as n approaches infinity.

Note: in practice, constant factors and extra terms are important. If a program f takes
1000000n time whereas another, g, takes n time, clearly g is faster (and better).

2.3 Questions

What is the order of growth in time for the following functions?

1. def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

def sum_of_factorial(n):
if n == 0:

return 1
else:
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return factorial(n) + sum_of_factorial(n - 1)

2. def fib_iter(n):
prev, cur, i = 0, 1, 1
while i < n:

prev, curr = curr, prev + curr
i += 1

return curr

3. def mod_7(n):
if n % 7 == 0:

return 0
else:

return 1 + mod_7(n - 1)

4. def bar(n):
if n % 2 == 1:

return n + 1
return n

def foo(n):
if n < 1:

return 2
if n % 2 == 0:

return foo(n - 1) + foo(n - 2)
else:

return 1 + foo(n - 2)

What is the order of growth of foo(bar(n))?

5. def bonk(n):
sum = 0
while n >= 2:

sum += n
n = n / 2

return sum
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3 Extra Questions

1. Write a function that creates a balanced binary search tree from a given sorted list. Its
runtime should be in Θ(n), where n is the number of nodes in the tree. Binary search
trees have an additional invariant (property) that each element in the right branch
must be larger than the entry and each element in the left branch must be smaller
than the entry.

def list_to_bst(lst):

2. Give the running times of the functions g and h in terms of n. Then, for a bigger
challenge, give the runtime of f in terms of x and y.

def f(x, y):
if x == 0 or y == 0:

return 1
if x < y:

return f(x, y-1)
if x > y:

return f(x-1, y)
else:

return f(x-1, y) + f(x, y-1)

def g(n):
return f(n, n)

def h(n):
return f(n, 1)
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