
SCHEME 9
COMPUTER SCIENCE 61A

October 30, 2014

In the next part of the course, we will be working with the Scheme programming lan-
guage. In addition to learning how to write Scheme programs, we will eventually write a
Scheme interpreter in Project 4.

Scheme is a dialect of the Lisp programming language, a language dating back to 1958.
The popularity of Scheme within the programming language community stems from its
simplicity – in fact, previous versions of CS 61A were taught in the Scheme language.

1 The Scheme Interpreter

Like Python, the Scheme language also has an interactive interpreter. On your class
accounts, you can access this by typing in stk.

nova [416] ˜ # stk
STk>

Keep this one thing in mind: everything is an expression.

1

DISCUSSION 9: SCHEME Page 2

2 Primitives

Scheme has a certain set of atomic primitive expressions. Atomic means that these expres-
sions cannot be divided up, or at least, not usually created out of smaller expressions. The
ones we’ll use the most are numbers (i.e., integers and floats), the two boolean values, and
symbols. Scheme also has strings, but we won’t be using them too often.

STk> 123
123
STk> 123.123
123.123
STk> ’a ; this is a symbol
a
STk> #t
#t
STk> #f
#f
STk> "asdf"
"asdf"

You’ll notice that numbers work pretty much the same in Scheme as they do in Python.
Also, instead of True and False, we have #t and #f. Before explaining symbols though,
let’s look at how we define variables:

STk> (define a 3)
a
STk> a
3

You’ll notice this is a lot different. In Scheme, you need to have define, the name of the
variable and then the expression (which first gets evaluated) that you want bound to the
name. The space between each of the parts (except the parentheses) matters. Also, notice
that to refer back to a, I just typed in a just as in Python.

The thing is – a is a symbol. When you type things into the interpreter, Scheme will
evaluate it. The rule for evaluating a symbol is to get the value bound to that symbol. This
is one difference between strings and symbols – symbols don’t evaluate to themselves.
However, as you saw above, when you type in ’a, you get a. This is because when you
use the single quote, you’re telling Scheme not to follow the normal rules of evaluation
and just have the symbol return as itself. You’ll also notice that you can use the single
quotes on integers, floats, and booleans. However they’re unnecessary because those
evaluate to themselves. Finally, let’s revisit what you wrote when you did (define a
3). Both define and a are symbols!

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

DISCUSSION 9: SCHEME Page 3
2.1 Questions

1. What would Scheme print?

STk> (define a 1)

STk> a

STk> (define b a)

STk> b

STk> (define c ’a)

STk> c

3 Evaluating Function Calls and Special Forms

Now just defining variables and printing out primitives isn’t very useful. You want to
call functions too:

STk> (+ 1 2)
3
STk> (- 2 3)
-1
STk> (* 6 3)
18
STk> (/ 5 2)
2.5
STk> (+ 1 (* 3 4))
13

3.1 Functions

Now you might notice that Scheme represents function calls differently. To call a function
in Scheme, you give the symbol for the function name, then you give the arguments
(remember the spaces!). Evaluating a Scheme function call works just like Python: first,
evaluate the operator (the first expression to the right of the (), then evaluate each of the
arguments. Then apply the operator to those evaluated arguments. So when you evaluate
(+ 1 2), you evaluate the + symbol which is bound to a built-in addition function, then
you evaluate 1 and 2. Finally, you apply the addition function to 1 and 2.

Some important functions you’ll want to use are:

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

DISCUSSION 9: SCHEME Page 4
• +, -, *, /

• eq?, =, >, >=, <, <=

3.2 Questions

1. What do the following return?

• (+ 1)

• (* 3)

• (+ (* 3 3) (* 4 4))

• (define a (define b 3))

• a

3.3 Special Forms

However, there are certain things that look like function calls that don’t follow this rule
for evaluation. These are called special forms. You’ve already seen one – define where, of
course, the first argument can’t be evaluated (or else it’d search for unbound variables!).
Another one we’ll use in this class is if.

An if expression looks like:
(if <CONDITION> <THEN> <ELSE>)

where <CONDITION>, <THEN> and <ELSE> are expressions. How it gets evaluated how-
ever is that first, <CONDITION> is evaluated. If it evaluates to #f, then <ELSE> is evalu-
ated. Otherwise, <THEN> is evaluated. Everything that is not #f is a ”true” expression.

STk> (if ’this-evaluates-to-true 1 2)
1
STk> (if #f (/1 0) ’this-is-returned)
this-is-returned

There are also special forms for the boolean operators which exhibit the same short cir-
cuiting behavior that you see in Python. The return values are either the value that lets
you know the expression evaluates to a true value or #f.

STk> (and 1 2 3)
3
STk> (or 1 2 3)
1
STk> (or #t (/ 1 0))
#t

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

DISCUSSION 9: SCHEME Page 5
STk> (and #f (/1 0))
#f
STk> (not 3)
#f
STk> (not #t)
#f

3.4 Questions

1. What does the following do?

STk> (if (or #t (/ 1 0)) 1 (/ 1 0))

STk> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (* 3 2)))

STk> ((if (< 4 3) + -) 4 100)

4 Lambdas, Environments and Defining Functions

Scheme has lambdas too! In fact, lambdas are more powerful in Scheme than in Python.
The syntax is (lambda (<PARAMETERS>) <EXPR>). Like in Python, lambdas are func-
tion values. Likewise, in Scheme, when a lambda expression is called, a new frame is
created where the symbols defined in the <PARAMETERS> section are bound to the argu-
ments passed in. Then, <EXPR> is evaluated under this new frame. Note that <EXPR> is
not evaluated until the lambda value is called.

STk> (define x 3)
x
STk> (define y 4)
y
STk> ((lambda (x y) (+ x y)) 6 7)
13

Like in Python, lambda functions are also values! So you can do this to define functions:

STk> (define square (lambda (x) (* x x)))
square
STk> (square 4)
16

You might notice that this is a little tedious though. Luckily Scheme has a shortcut – our
old friend define:

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

DISCUSSION 9: SCHEME Page 6
STk> (define (square x) (* x x))
square
STk> (square 5)
25

When you do (define (<FUNCTIONNAME> <PARAMETERS>) <EXPR>), Scheme will
automatically transform it to (define <FUNCTIONNAME> (lambda (<PARAMETERS>)
<EXPR>). In this way, lambdas are more central to Scheme than they are to Python.

There is also another special form based around lambda – let. The structure of let is
as follows:

(let ((<SYMBOL1> <EXPR1>)
...
(<SYMBOLN> <EXPRN>))
<BODY>)

This special form really just gets transformed to:

((lambda (<SYMBOL1> ... <SYMBOLN>) <BODY>) <EXPR1> ... <EXPRN>)

You’ll notice that what let does then is bind symbols to expressions. For example, this is
useful if you need to reuse a value multiple times, or if you want to make your code more
readable:

(define (sin x)
(if (< x 0.000001)

x
(let ((recursive-step (sin (/ x 3))))

(- (* 3 recursive-step)
(* 4 (expt recursive-step 3))))))

4.1 Questions

1. Write a function that calculates factorial. (Note how you haven’t been told any meth-
ods for iteration.)

(define (factorial x)

)

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

DISCUSSION 9: SCHEME Page 7
2. Write a function that calculates the nth Fibonacci number.

(define (fib n)
(if (< n 2)

1

)

5 Pairs and Lists

So far, we have lambdas and a few atomic primitives. How do we create larger more
complicated data structures? Well, the most important data structure in Scheme is the
pair. A pair is an abstract data type that has the constructor cons which takes two ar-
guments, and it has two selectors car and cdr which get the first and second argument
respectively. car and cdr don’t stand for anything really now but if you want the history
go to "http://en.wikipedia.org/wiki/CAR_and_CDR"

STk> (define a (cons 1 2))
a
STk> a
(1 . 2)
STk> (car a)
1
STk> (cdr a)
2

Note that when a pair is printed, the car and cdr element are separated by a period.

A common data structure that you build out of pairs is the list. A list is either the empty
list, which is another primitive represented as ’() or nil, or a cons pair where the cdr
is a list. (Note the similarity to Rlists!)

STk> ’()
()
STk> nil
()
STk> (cons 1 (cons 2 nil))
(1 2)
STk> (cons 1 (cons 2 (cons 3 nil)))
(1 2 3)

Note that there are no dots here. When a dot is followed by a left parenthesis, the dot,
left parenthesis, and matching right parenthesis are deleted. You can check if a list is nil

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

"http://en.wikipedia.org/wiki/CAR_and_CDR"

DISCUSSION 9: SCHEME Page 8
with the null? function.

A shorthand for writing out a list is:

STk> ’(1 2 3)
(1 2 3)
STk> ’(define (square x) (* x x))
(define (square x) (* x x))

You might notice that the return value of the second expression looks a lot like Scheme
code. That’s because Scheme code is made up of lists. When you quote an expression
(like a list), you’re telling Scheme not to evaluate the expression, but instead keep it as is.
This is one of the reasons why Scheme is cool – it can be defined within itself!

5.1 Questions

1. Define map where the first argument is a function and the second a list. This should
work like Python’s map.

(define (map fn lst)

)

2. Define reduce where the first argument is a function that takes two arguments, the
second a default value and the third a list. This should work like Python’s reduce.

(define (reduce fn s lst)

)

3. Fill out the following to complete an abstract type for binary trees:

(define (make-btree entry left right)
(cons entry (cons left right)))

(define (entry tree)
)

(define (left tree)
)

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

DISCUSSION 9: SCHEME Page 9

(define (right tree)
)

4. Using the above definition, write a function that sums over the binary tree. For our
purposes, assume that if there is no left or if there is no right branch, the values for
those should return 0.

(define (btree-sum tree)

)

5.2 Extra Questions

1. Write a Scheme function that when given an element, a list, and a position, inserts the
element into the list at the position.

(define (insert element lst position)

)

2. Write a Scheme function that when given a list, such as (1 2 3 4), duplicates every
element in the list (i.e. (1 1 2 2 3 3 4 4)).

(define (duplicate lst)

)

CS 61A Fall 2014: John DeNero, with
Soumya Basu, Matthew Chow, Ajeya Cotra, Brian Hou, Andrew Huang, Robert Huang, Michelle Hwang, Mehdi
Jamei, Joy Jeng, Chloe Lischinsky, Kaylee Mann, Beth Marrone, Allen Nguyen, Youri Park, Jack Qiao, Sumukh
Sridhara, Steven Tang, Michael Tao, Dickson Tsai, Iris Wang, Albert Wu, Chenyang Yuan, Marvin Zhang

