# CS 61A Fall 2014
# Name:
# Login:
def g(n):
"""Return the value of G(n), computed recursively.
>>> g(1)
1
>>> g(2)
2
>>> g(3)
3
>>> g(4)
10
>>> g(5)
22
"""
"*** YOUR CODE HERE ***"
def g_iter(n):
"""Return the value of G(n), computed iteratively.
>>> g_iter(1)
1
>>> g_iter(2)
2
>>> g_iter(3)
3
>>> g_iter(4)
10
>>> g_iter(5)
22
"""
"*** YOUR CODE HERE ***"
def has_seven(k):
"""Returns True if at least one of the digits of k is a 7, False otherwise.
>>> has_seven(3)
False
>>> has_seven(7)
True
>>> has_seven(2734)
True
>>> has_seven(2634)
False
>>> has_seven(734)
True
>>> has_seven(7777)
True
"""
"*** YOUR CODE HERE ***"
def pingpong(n):
"""Return the nth element of the ping-pong sequence.
>>> pingpong(7)
7
>>> pingpong(8)
6
>>> pingpong(15)
1
>>> pingpong(21)
-1
>>> pingpong(22)
0
>>> pingpong(30)
6
>>> pingpong(68)
2
>>> pingpong(69)
1
>>> pingpong(70)
0
>>> pingpong(71)
1
>>> pingpong(72)
0
>>> pingpong(100)
2
"""
"*** YOUR CODE HERE ***"
def count_change(amount):
"""Return the number of ways to make change for amount.
>>> count_change(7)
6
>>> count_change(10)
14
>>> count_change(20)
60
>>> count_change(100)
9828
"""
"*** YOUR CODE HERE ***"
def towers_of_hanoi(n, start, end):
"""Print the moves required to solve the towers of hanoi game, starting
with n disks on the start pole and finishing on the end pole.
The game is to assumed to have 3 poles.
>>> towers_of_hanoi(1, 1, 3)
Move the top disk from rod 1 to rod 3
>>> towers_of_hanoi(2, 1, 3)
Move the top disk from rod 1 to rod 2
Move the top disk from rod 1 to rod 3
Move the top disk from rod 2 to rod 3
>>> towers_of_hanoi(3, 1, 3)
Move the top disk from rod 1 to rod 3
Move the top disk from rod 1 to rod 2
Move the top disk from rod 3 to rod 2
Move the top disk from rod 1 to rod 3
Move the top disk from rod 2 to rod 1
Move the top disk from rod 2 to rod 3
Move the top disk from rod 1 to rod 3
"""
assert 0 < start <= 3 and 0 < end <= 3 and start != end, "Bad start/end"
"*** YOUR CODE HERE ***"
from operator import sub, mul
def make_anonymous_factorial():
"""Return the value of an expression that computes factorial.
>>> make_anonymous_factorial()(5)
120
"""
return YOUR_EXPRESSION_HERE