Due by 11:59pm on Monday, 9/14

Instructions

Download hw02.zip. Inside the archive, you will find a file called hw02.py, along with a copy of the OK autograder.

Submission: When you are done, submit with python3 ok --submit. You may submit more than once before the deadline; only the final submission will be scored. See Lab 1 for instructions on submitting assignments.

Using OK: If you have any questions about using OK, please refer to this guide.

Readings: You might find the following references useful:

Required questions

Several doctests refer to these one-argument functions:

def square(x):
    return x * x

def triple(x):
    return 3 * x

def identity(x):
    return x

def increment(x):
    return x + 1

Question 1: Piecewise

Implement piecewise, which takes two one-argument functions, f and g, along with a number b. It returns a new function that takes a number x and returns either f(x) if x is less than b, or g(x) if x is greater than or equal to b.

def piecewise(f, g, b):
    """Returns the piecewise function h where:

    h(x) = f(x) if x < b,
           g(x) otherwise

    >>> def negate(x):
    ...     return -x
    >>> abs_value = piecewise(negate, identity, 0)
    >>> abs_value(6)
    6
    >>> abs_value(-1)
    1
    """
    "*** YOUR CODE HERE ***"

Use OK to test your code:

python3 ok -q piecewise

Question 2: Product

The summation(term, n) function from lecture adds up term(1) + ... + term(n) Write a similar product(n, term) function that returns term(1) * ... * term(n). Show how to define the factorial function in terms of product. Hint: try using the identity function for factorial.

def product(n, term):
    """Return the product of the first n terms in a sequence.

    n    -- a positive integer
    term -- a function that takes one argument

    >>> product(3, identity) # 1 * 2 * 3
    6
    >>> product(5, identity) # 1 * 2 * 3 * 4 * 5
    120
    >>> product(3, square)   # 1^2 * 2^2 * 3^2
    36
    >>> product(5, square)   # 1^2 * 2^2 * 3^2 * 4^2 * 5^2
    14400
    """
    "*** YOUR CODE HERE ***"

def factorial(n):
    """Return n factorial for n >= 0 by calling product.

    >>> factorial(4)
    24
    >>> factorial(6)
    720
    """
    "*** YOUR CODE HERE ***"

Use OK to test your code:

python3 ok -q product
python3 ok -q factorial

Question 3: Accumulate

Show that both summation and product are instances of a more general function, called accumulate, with the following signature:

from operator import add, mul

def accumulate(combiner, base, n, term):
    """Return the result of combining the first n terms in a sequence.

    >>> accumulate(add, 0, 5, identity)  # 0 + 1 + 2 + 3 + 4 + 5
    15
    >>> accumulate(add, 11, 5, identity) # 11 + 1 + 2 + 3 + 4 + 5
    26
    >>> accumulate(add, 11, 0, identity) # 11
    11
    >>> accumulate(add, 11, 3, square)   # 11 + 1^2 + 2^2 + 3^2
    25
    >>> accumulate(mul, 2, 3, square)   # 2 * 1^2 * 2^2 * 3^2
    72
    """
    "*** YOUR CODE HERE ***"

accumulate(combiner, base, n, term) takes the following arguments:

  • term and n: the same arguments as in summation and product
  • combiner: a two-argument function that specifies how the current term combined with the previously accumulated terms.
  • base: value that specifies what value to use to start the accumulation.

For example, accumulate(add, 11, 3, square) is

11 + square(1) + square(2) + square(3)

Implement accumulate and show how summation and product can both be defined as simple calls to accumulate:

def summation_using_accumulate(n, term):
    """An implementation of summation using accumulate.

    >>> summation_using_accumulate(5, square)
    55
    >>> summation_using_accumulate(5, triple)
    45
    """
    "*** YOUR CODE HERE ***"

def product_using_accumulate(n, term):
    """An implementation of product using accumulate.

    >>> product_using_accumulate(4, square)
    576
    >>> product_using_accumulate(6, triple)
    524880
    """
    "*** YOUR CODE HERE ***"

Use OK to test your code:

python3 ok -q accumulate
python3 ok -q summation_using_accumulate
python3 ok -q product_using_accumulate

Question 4: Repeated

Implement repeated(f, n):

  • f is a one-argument function that takes a number and returns another number.
  • n is a positive integer

repeated returns another function that, when given an argument x, will compute f(f(....(f(x))....)) (apply f a total n times). For example, repeated(square, 3)(42) evaluates to square(square(square(42))).

def repeated(f, n):
    """Return the function that computes the nth application of f.

    >>> add_three = repeated(increment, 3)
    >>> add_three(5)
    8
    >>> repeated(triple, 5)(1) # 3 * 3 * 3 * 3 * 3 * 1
    243
    >>> repeated(square, 2)(5) # square(square(5))
    625
    >>> repeated(square, 4)(5) # square(square(square(square(5))))
    152587890625
    """
    "*** YOUR CODE HERE ***"

Hint: You may find it convenient to use compose1 from the textbook:

def compose1(f, g):
    """Return a function h, such that h(x) = f(g(x))."""
    def h(x):
        return f(g(x))
    return h

Use OK to test your code:

python3 ok -q repeated

Extra questions

Extra questions are not worth extra credit and are entirely optional. They are designed to challenge you to think creatively!

Question 5: Church numerals

The logician Alonzo Church invented a system of representing non-negative integers entirely using functions. The purpose was to show that functions are sufficient to describe all of number theory: if we have functions, we do not need to assume that numbers exist, but instead we can invent them.

Your goal in this problem is to rediscover this representation known as Church numerals. Here are the definitions of zero, as well as a function that returns one more than its argument:

def zero(f):
    return lambda x: x

def successor(n):
    return lambda f: lambda x: f(n(f)(x))

First, define functions one and two such that they have the same behavior as successor(zero) and successsor(successor(zero)) respectively, but do not call successor in your implementation.

Next, implement a function church_to_int that converts a church numeral argument to a regular Python integer.

Finally, implement functions add_church, mul_church, and pow_church that perform addition, multiplication, and exponentiation on church numerals.

def one(f):
    """Church numeral 1: same as successor(zero)"""
    "*** YOUR CODE HERE ***"

def two(f):
    """Church numeral 2: same as successor(successor(zero))"""
    "*** YOUR CODE HERE ***"

three = successor(two)

def church_to_int(n):
    """Convert the Church numeral n to a Python integer.

    >>> church_to_int(zero)
    0
    >>> church_to_int(one)
    1
    >>> church_to_int(two)
    2
    >>> church_to_int(three)
    3
    """
    "*** YOUR CODE HERE ***"

def add_church(m, n):
    """Return the Church numeral for m + n, for Church numerals m and n.

    >>> church_to_int(add_church(two, three))
    5
    """
    "*** YOUR CODE HERE ***"

def mul_church(m, n):
    """Return the Church numeral for m * n, for Church numerals m and n.

    >>> four = successor(three)
    >>> church_to_int(mul_church(two, three))
    6
    >>> church_to_int(mul_church(three, four))
    12
    """
    "*** YOUR CODE HERE ***"

def pow_church(m, n):
    """Return the Church numeral m ** n, for Church numerals m and n.

    >>> church_to_int(pow_church(two, three))
    8
    >>> church_to_int(pow_church(three, two))
    9
    """
    "*** YOUR CODE HERE ***"

Use OK to test your code:

python3 ok -q church_to_int
python3 ok -q add_church
python3 ok -q mul_church
python3 ok -q pow_church