
61A Lecture 4

Announcements

Iteration Example

fib

n

pred
curr

k

5

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""
 pred, curr = 0, 1 # 0th and 1st Fibonacci numbers
 k = 1 # curr is the kth Fibonacci number
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

The Fibonacci Sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987

4

The next Fibonacci number is the sum of
the current one and its predecessor

12345

Discussion Question

5

Is this alternative definition of fib the
same or different from the original fib?

def fib(n):
 """Compute the nth Fibonacci number?"""
 pred, curr = 0, 1
 k = 1
 while k < n:
 pred, curr = curr, pred + curr
 k = k + 1
 return curr

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987
I'm still herepred, curr = 1, 0

k = 0

(Demo)

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might possibly take as arguments.

A function's range is the set of output values it might possibly return.

A pure function's behavior is the relationship it creates between input and output.

7

def square(x):
 """Return X * X."""

def fib(n):
 """Compute the nth Fibonacci number, for N >= 1."""

x is a real number

returns a non-negative
real number

return value is the
square of the input

n is an integer greater than or equal to 1

returns a Fibonacci number

return value is the nth Fibonacci number

A Guide to Designing Function

Give each function exactly one job, but make it apply to many related situations

8

Don’t repeat yourself (DRY). Implement a process just once, but execute it many times.

>>> round(1.23, 1)
1.2

>>> round(1.23, 0)
1

>>> round(1.23, 5)
1.23

(Demo)

>>> round(1.23)
1

Generalization

Shape:

r2 ⇡ · r2 3
p
3

2
· r21 · r2

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

r
r r

Area:

Finding common structure allows for shared implementation

10

(Demo)

Higher-Order Functions

5X

k=1

k = 1 + 2 + 3 + 4 + 5 = 15

5X

k=1

k3 = 13 + 23 + 33 + 43 + 53 = 225

5X

k=1

8

(4k � 3) · (4k � 1)
=

8

3
+

8

35
+

8

99
+

8

195
+

8

323
= 3.04

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

12

(Demo)

Summation Example

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Function of a single argument
(not called "term")

A formal parameter that will
be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 1 + 8 + 27 + 64 + 125

13

Functions as Return Values

(Demo)

hof.py Page 2

 return total

def identity(k):
 return k

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 225
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

def pi_term(k):
 return 8 / (k * 4 − 3) / (k * 4 − 1)

Local function definitions; returning functions

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

def compose1(f, g):
 """Return a function that composes f and g.

 f, g −− functions of a single argument
 """
 def h(x):
 return f(g(x))
 return h

@main
def run():
 interact()

Locally Defined Functions

A function that
returns a function

A def statement within
another def statement

The name add_three is bound
to a function

Can refer to names in the
enclosing function

Functions defined within other function bodies are bound to names in a local frame

15

make_adder(n):

Call Expressions as Operator Expressions

make_adder(1) (2)

Operator Operand

An expression that
evaluates to a function

An expression that
evaluates to its argument

16

2

3

make_adder(1)
func adder(k)

func make_adder(n) 1

func adder(k)

