

Announcements

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Digit Sums

$2+0+1+5=8$

If a number a is divisible by 9, then sum_digits(a) is also divisible by Useful for typo detection

Credit cards actually use the Luhn algorithm, which we'll implement after digit_sum

```
Sum Digits Without a While Statement
    def split(n):
    """Split positive n into all but its last digit and its last digit."""
    return n // 10, n % 10
    def sum_digits(n):
    ""Return the sum of the digits of positive integer n.""n
    if n<10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```

 The Anatomy of a Recursive Function
 The def statement header is similar to other functions
 Conditional statements check for base cases
 - Base cases are evaluated without recursive calls
 Recursive cases are evaluated with recursive calls
 def sum_digits(\(n\)):
 "" "Return the sum of the digits of positive integer n."""
 if \(\mathrm{n}<10\) :
 return n
 else:
 all_but_last, last \(=\) split(\(n\))
 return sum_digits(all_but_last) + last

Iteration vs Recursion

Iteration is a special case of recursion		
	Using while:	Using recursion:
	```def fact_iter(n): total, k = 1, 1 while k <= n: total, k = total*k, k+1 return total```	```def fact(n): if }\textrm{n}==0\mathrm{ : return 1 else: return n * fact(n-1)```
Math:	$n!=\prod_{k=1}^{n} k$	$n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}$
Names:	$n$, total, k , fact_iter	$n$ n, fact

## The Recursive Leap of Faith

```
def fact(n):
 if n== 0:
 return 1
 return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case
2. Treat fact as a functional abstraction!
3. Assume that fact( $\mathrm{n}-1$ ) is correct
4. Verify that fact( n ) is correct

## The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm
First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., $7 *$
$2=14$ ), then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$ )
Second: Take the sum of all the digits


The Luhn sum of a valid credit card number is a multiple of 10

## Recursion and Iteration

## Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.
Idea: Figure out what state must be maintained by the iterative function.
def sum_digits( n ):
"""Return the sum of the digits of positive integer n."""
if $n<10$ :
return n
else:
all_but_last, last $=\operatorname{split}(n)$
return sum_digits(all_but_last) + last $A$ partial sum
What's left to sum

## Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.
Idea: The state of an iteration can be passed as arguments.
def sum_digits_iter $(n):$
digit_sum $=0$
while $n>0$ 0:
n, last $=\operatorname{split}(\mathrm{n})$
$n$, last $=$ split $(n)$
digit $n$ sum $=$ digit_sum + last $\quad$ Updates via assignment become...
retư̈n digit_süm
def $\begin{aligned} & \text { sum_digits_rec }(n, \text { digit_sum) } \\ & \text { if } n=0\end{aligned}$,
if $\mathrm{n}==0$ :
return digit_sum $\quad \ldots$ arguments to a recursive call
$\begin{gathered}\text { else: } \\ n, \\ \text {, last }\end{gathered}=\operatorname{split}(n)$
return sum_digits_rec( $n$, digit_sum + last)

