
CS 61A Lecture 11

Announcements

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

Dictionaries are unordered collections of key-value pairs

Dictionary keys do have two restrictions:

•A key of a dictionary cannot be a list or a dictionary (or any mutable type)

•Two keys cannot be equal; There can be at most one value for a given key

This first restriction is tied to Python's underlying implementation of dictionaries

The second restriction is part of the dictionary abstraction

If you want to associate multiple values with a key, store them all in a sequence value

4

Box-and-Pointer Notation

The Closure Property of Data Types

•A method for combining data values satisfies the closure property if: 
 
 The result of combination can itself be combined using the same method

•Closure is powerful because it permits us to create hierarchical structures

•Hierarchical structures are made up of parts, which themselves are made up
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

6

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

7Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element

Each box either contains a primitive value or points to a compound value

8Interactive Diagram

Slicing

(Demo)

Slicing Creates New Values

10Interactive Diagram

Processing Container Values

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value

• sum(iterable[, start]) -> value 
 
Return the sum of an iterable of numbers (NOT strings) plus the value 
of parameter 'start' (which defaults to 0). When the iterable is 
empty, return start.

• max(iterable[, key=func]) -> value 
max(a, b, c, ...[, key=func]) -> value 
 
With a single iterable argument, return its largest item. 
With two or more arguments, return the largest argument.

• all(iterable) -> bool 
 
Return True if bool(x) is True for all values x in the iterable. 
If the iterable is empty, return True.

12

(Demo)

Trees

Tree Abstraction

14

Recursive description (wooden trees):

A tree has a root value and a list of branches

Each branch is a tree

A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees):

Each location in a tree is called a node

Each node has a value

One node can be the parent/child of another

1 1

0 1

Root value

Branch

Leaf

Values

Nodes

People often refer to values by their locations: "each parent is the sum of its children"

Implementing the Tree Abstraction

• A tree has a root value
and a list of branches

• Each branch is a tree

15

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):
 return [root] + branches

def root(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

Implementing the Tree Abstraction

(Demo)

16

 for branch in branches:
 assert is_tree(branch)
 return [root] + list(branches)

def is_leaf(tree):
 return not branches(tree)

Verifies that
tree is bound

to a list

Creates a list
from a sequence

of branches

def root(tree):
 return tree[0]

def branches(tree):
 return tree[1:]

def is_tree(tree):
 if type(tree) != list or len(tree) < 1:
 return False
 for branch in branches(tree):
 if not is_tree(branch):
 return False
 return True

def tree(root, branches=[]):
Verifies the

tree definition

• A tree has a root value
and a list of branches

• Each branch is a tree

>>> tree(3, [tree(1),
... tree(2, [tree(1),
... tree(1)])])
[3, [1], [2, [1], [1]]]

2

1

3

1

1

Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function

The recursive case typically makes a recursive call on each branch, then aggregates

18

(Demo)

def count_leaves(t):

 """Count the leaves of a tree."""

 if is_leaf(t):

 return 1

 else:

 branch_counts = [count_leaves(b) for b in branches(t)]

 return sum(branch_counts)

def leaves(tree):
 """Return a list containing the leaves of tree.

 >>> leaves(fib_tree(5))
 [1, 0, 1, 0, 1, 1, 0, 1]
 """
 if is_leaf(tree):
 return [root(tree)]
 else:
 return sum(______________________________, []))

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree

Hint: If you sum a list of lists, you get a list containing the elements of those lists

19

>>> sum([[1], [2, 3], [4]], [])
[1, 2, 3, 4]
>>> sum([[1]], [])
[1]
>>> sum([[[1]], [2]], [])
[[1], 2]

List of leaves for each branch

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree is typically also recursive

20

def	increment(t):	
				"""Return	a	tree	like	t	but	with	all	node	values	incremented."""	
				return	tree(root(t)	+	1,	[increment(b)	for	b	in	branches(t)])

def	increment_leaves(t):	
				"""Return	a	tree	like	t	but	with	leaf	values	incremented."""	
				if	is_leaf(t):	
								return	tree(root(t)	+	1)	
				else:	
								bs	=	[increment_leaves(b)	for	b	in	branches(t)]	
								return	tree(root(t),	bs)

Example: Printing Trees

(Demo)

