CS 61A Lecture 11

Box-and-Pointer Notation

Announcements

	Limitations on Dictionaries
	Dictionaries are unordered collections of key-value pairs
Dictionaries	Dictionary keys do have two restrictions:
	• A key of a dictionary cannot be a list or a dictionary (or any <i>mutable type</i>)
	• Two keys cannot be equal; There can be at most one value for a given key
	This first restriction is tied to Python's underlying implementation of dictionaries
	The second restriction is part of the dictionary abstraction
{'Dem': 0}	If you want to associate multiple values with a key, store them all in a sequence value

The Closure Property of Data Types

• A method for combining data values satisfies the *closure property* if: The result of combination can itself be combined using the same method

• Closure is powerful because it permits us to create hierarchical structures • Hierarchical structures are made up of parts, which themselves are made up of parts, and so on

Lists can contain lists as elements (in addition to anything else)

Box-and-Pointer Notation in Environment Diagrams	Box-and-Pointer Notation in Environment Diagrams
Lists are represented as a row of index-labeled adjacent boxes, one per element Each box either contains a primitive value or points to a compound value	Lists are represented as a row of index-labeled adjacent boxes, one per element Each box either contains a primitive value or points to a compound value
pair = [1, 2]	$\begin{array}{c c} \hline \\ \hline $
Interactive Diagram	3 nested_list = [[1, 2], [], 4 [[3, False, None], → 5 [4, lambda: 5]]] Interactive Diagram 3 False None 5 False None

	Slicing Creates New Values
Slicing	$1 digits = [1, 8, 2, 8]$ $2 start = digits[:1]$ $3 middle = digits[2:]$ $\Rightarrow 4 end = digits[2:]$ $I B 2 B$ Ist
(Demo)	Interactive Diagram

	Tree Processing Uses Recursion
	Processing a leaf is often the base case of a tree processing function
	The recursive case typically makes a recursive call on each branch, then aggregates
	<pre>def count_leaves(t):</pre>
Tree Processing	"""Count the leaves of a tree."""
	<pre>if is_leaf(t):</pre>
	return 1
	else:
	<pre>branch_counts = [count_leaves(b) for b in branches(t)]</pre>
	return sum(branch_counts)
(Demo)	(Demo)

