
CS 61A Lecture 11 Announcements

Dictionaries

{'Dem': 0}

Limitations on Dictionaries

Dictionaries are unordered collections of key-value pairs 

Dictionary keys do have two restrictions: 

• A key of a dictionary cannot be a list or a dictionary (or any mutable type) 

• Two keys cannot be equal; There can be at most one value for a given key 

This first restriction is tied to Python's underlying implementation of dictionaries 

The second restriction is part of the dictionary abstraction 

If you want to associate multiple values with a key, store them all in a sequence value

4

Box-and-Pointer Notation

The Closure Property of Data Types

• A method for combining data values satisfies the closure property if: 
 
  The result of combination can itself be combined using the same method 

• Closure is powerful because it permits us to create hierarchical structures 

• Hierarchical structures are made up of parts, which themselves are made up 
of parts, and so on

Lists can contain lists as elements (in addition to anything else)

6

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element 

Each box either contains a primitive value or points to a compound value

7Interactive Diagram

Box-and-Pointer Notation in Environment Diagrams

Lists are represented as a row of index-labeled adjacent boxes, one per element 

Each box either contains a primitive value or points to a compound value

8Interactive Diagram



Slicing

(Demo)

Slicing Creates New Values

10Interactive Diagram

Processing Container Values

Sequence Aggregation

Several built-in functions take iterable arguments and aggregate them into a value 

• sum(iterable[, start]) -> value 
 
Return the sum of an iterable of numbers (NOT strings) plus the value 
of parameter 'start' (which defaults to 0).  When the iterable is 
empty, return start. 

• max(iterable[, key=func]) -> value 
max(a, b, c, ...[, key=func]) -> value 
 
With a single iterable argument, return its largest item. 
With two or more arguments, return the largest argument. 

• all(iterable) -> bool 
 
Return True if bool(x) is True for all values x in the iterable. 
If the iterable is empty, return True.

12

(Demo)

Trees

Tree Abstraction

14

Recursive description (wooden trees): 

A tree has a root value and a list of branches 

Each branch is a tree 

A tree with zero branches is called a leaf

2

3

1

0 1

Relative description (family trees): 

Each location in a tree is called a node 

Each node has a value 

One node can be the parent/child of another

1 1

0 1

Root value

Branch

Leaf

Values

Nodes

People often refer to values by their locations: "each parent is the sum of its children"

Implementing the Tree Abstraction

• A tree has a root value 
and a list of branches  

• Each branch is a tree

15

>>> tree(3, [tree(1), 
...          tree(2, [tree(1),  
...                   tree(1)])]) 
[3, [1], [2, [1], [1]]]

2

1

3

1

1

def tree(root, branches=[]):
   return [root] + branches

def root(tree): 
    return tree[0] 

def branches(tree): 
    return tree[1:]

Implementing the Tree Abstraction

(Demo)

16

    for branch in branches: 
        assert is_tree(branch) 
    return [root] + list(branches)

def is_leaf(tree): 
    return not branches(tree)

Verifies that 
tree is bound 
to a list

Creates a list 
from a sequence 

of branches

def root(tree): 
    return tree[0] 

def branches(tree): 
    return tree[1:]

def is_tree(tree): 
    if type(tree) != list or len(tree) < 1: 
        return False 
    for branch in branches(tree): 
        if not is_tree(branch): 
            return False 
    return True

def tree(root, branches=[]):
Verifies the 

tree definition

• A tree has a root value 
and a list of branches  

• Each branch is a tree

>>> tree(3, [tree(1), 
...          tree(2, [tree(1),  
...                   tree(1)])]) 
[3, [1], [2, [1], [1]]]

2

1

3

1

1



Tree Processing

(Demo)

Tree Processing Uses Recursion

Processing a leaf is often the base case of a tree processing function 

The recursive case typically makes a recursive call on each branch, then aggregates

18

(Demo)

def count_leaves(t): 

    """Count the leaves of a tree.""" 

    if is_leaf(t): 

        return 1 

    else: 

        branch_counts = [count_leaves(b) for b in branches(t)] 

        return sum(branch_counts)

def leaves(tree): 
    """Return a list containing the leaves of tree. 

    >>> leaves(fib_tree(5)) 
    [1, 0, 1, 0, 1, 1, 0, 1] 
    """ 
    if is_leaf(tree): 
        return [root(tree)] 
    else: 
        return sum(______________________________, []))

Discussion Question

Implement leaves, which returns a list of the leaf values of a tree 

Hint: If you sum a list of lists, you get a list containing the elements of those lists

19

>>> sum([ [1], [2, 3], [4] ], []) 
[1, 2, 3, 4] 
>>> sum([ [1] ], []) 
[1] 
>>> sum([ [[1]], [2] ], []) 
[[1], 2] 

List of leaves for each branch

branches(tree)

[branches(b) for b in branches(tree)]

leaves(tree)

[leaves(b) for b in branches(tree)]

[b for b in branches(tree)]

[branches(s) for s in leaves(tree)]

[s for s in leaves(tree)]

[leaves(s) for s in leaves(tree)]

Creating Trees

A function that creates a tree from another tree is typically also recursive

20

def	increment(t):	
				"""Return	a	tree	like	t	but	with	all	node	values	incremented."""	
				return	tree(root(t)	+	1,	[increment(b)	for	b	in	branches(t)])

def	increment_leaves(t):	
				"""Return	a	tree	like	t	but	with	leaf	values	incremented."""	
				if	is_leaf(t):	
								return	tree(root(t)	+	1)	
				else:	
								bs	=	[increment_leaves(b)	for	b	in	branches(t)]	
								return	tree(root(t),	bs)

Example: Printing Trees

(Demo)


