
61A Lecture 15

Announcements

Object-Oriented Programming

Object-Oriented Programming

4

Object-Oriented Programming

A method for organizing programs

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Jack's
Account

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Jack's
Account

John

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Jack's
Account

John

Withdraw
$10

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Jack's
Account

John

Withdraw
$10

Deposit
$10

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Jack's
Account

John

Withdraw
$10

Deposit
$10

Object-Oriented Programming

A method for organizing programs

• Data abstraction

• Bundling together information and related behavior

A metaphor for computation using distributed state

• Each object has its own local state

• Each object also knows how to manage its own local state,
based on method calls

• Method calls are messages passed between objects

• Several objects may all be instances of a common type

• Different types may relate to each other

Specialized syntax & vocabulary to support this metaphor

4

John's
Account

Jack's
Account

John

Withdraw
$10

Deposit
$10

Apply for
a loan!

Classes

5

Classes

A class serves as a template for its instances

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

>>> a = Account('John')

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

>>> a = Account('John')

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

>>> a = Account('John')

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

>>> a = Account('John')
>>> a.holder
'John'

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

Idea: All bank accounts should have  
withdraw and deposit behaviors that all work
in the same way

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

Idea: All bank accounts should have  
withdraw and deposit behaviors that all work
in the same way

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

Idea: All bank accounts should have  
withdraw and deposit behaviors that all work
in the same way

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

Idea: All bank accounts should have  
withdraw and deposit behaviors that all work
in the same way

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

Idea: All bank accounts should have  
withdraw and deposit behaviors that all work
in the same way

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

5

Classes

A class serves as a template for its instances

Idea: All bank accounts have a balance and
an account holder; the Account class should
add those attributes to each newly created
instance

Idea: All bank accounts should have  
withdraw and deposit behaviors that all work
in the same way

>>> a = Account('John')
>>> a.holder
'John'
>>> a.balance
0

>>> a.deposit(15)
15
>>> a.withdraw(10)
5
>>> a.balance
5
>>> a.withdraw(10)
'Insufficient funds'

Better idea: All bank accounts share a
withdraw method and a deposit method

5

Class Statements

The Class Statement

7

The Class Statement

7

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

7

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

The suite is executed when the
class statement is executed.

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

The suite is executed when the
class statement is executed.

>>> class Clown:
... nose = 'big and red'
... def dance():
... return 'No thanks'
...

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

The suite is executed when the
class statement is executed.

>>> class Clown:
... nose = 'big and red'
... def dance():
... return 'No thanks'
...
>>> Clown.nose
'big and red'

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

The suite is executed when the
class statement is executed.

>>> class Clown:
... nose = 'big and red'
... def dance():
... return 'No thanks'
...
>>> Clown.nose
'big and red'
>>> Clown.dance()
'No thanks'

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

The suite is executed when the
class statement is executed.

>>> class Clown:
... nose = 'big and red'
... def dance():
... return 'No thanks'
...
>>> Clown.nose
'big and red'
>>> Clown.dance()
'No thanks'
>>> Clown
<class '__main__.Clown'>

class <name>:
 <suite>

The Class Statement

A class statement creates a new class and binds that class to <name> in the first frame of
the current environment

Assignment & def statements in <suite> create attributes of the class (not names in frames)

7

The suite is executed when the
class statement is executed.

>>> class Clown:
... nose = 'big and red'
... def dance():
... return 'No thanks'
...
>>> Clown.nose
'big and red'
>>> Clown.dance()
'No thanks'
>>> Clown
<class '__main__.Clown'>

class <name>:
 <suite>

Object Construction

8

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

1.A new instance of that class is created:

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

1.A new instance of that class is created:

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

8

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

balance: 0

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

balance: 0 holder: 'Jim'

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

balance: 0 holder: 'Jim'

__init__ is called
a constructor

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

balance: 0 holder: 'Jim'

__init__ is called
a constructor

When a class is called:

1.A new instance of that class is created:

2.The __init__ method of the class is called with the new object as its first
argument (named self), along with any additional arguments provided in the
call expression

An account instance

Object Construction

Idea: All bank accounts have a balance and an account holder;  
the Account class should add those attributes to each of its instances

>>> a = Account('Jim')
>>> a.holder
'Jim'
>>> a.balance
0

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

8

balance: 0 holder: 'Jim'

__init__ is called
a constructor

Object Identity

9

Object Identity

Every object that is an instance of a user-defined class has a unique identity:

9

Object Identity

>>> a = Account('John')
>>> b = Account('Jack')

Every object that is an instance of a user-defined class has a unique identity:

9

Object Identity

>>> a = Account('John')
>>> b = Account('Jack')

Every object that is an instance of a user-defined class has a unique identity:

9

Every call to Account creates a new Account
instance. There is only one Account class.

Object Identity

>>> a = Account('John')
>>> b = Account('Jack')

Every object that is an instance of a user-defined class has a unique identity:

9

Every call to Account creates a new Account
instance. There is only one Account class.

>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

>>> a = Account('John')
>>> b = Account('Jack')

Every object that is an instance of a user-defined class has a unique identity:

Identity operators "is" and "is not" test if two expressions evaluate to the same object:

9

Every call to Account creates a new Account
instance. There is only one Account class.

>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

>>> a = Account('John')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class has a unique identity:

Identity operators "is" and "is not" test if two expressions evaluate to the same object:

9

Every call to Account creates a new Account
instance. There is only one Account class.

>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

>>> a = Account('John')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class has a unique identity:

Binding an object to a new name using assignment does not create a new object:

Identity operators "is" and "is not" test if two expressions evaluate to the same object:

9

Every call to Account creates a new Account
instance. There is only one Account class.

>>> a.balance
0
>>> b.holder
'Jack'

Object Identity

>>> a = Account('John')
>>> b = Account('Jack')

>>> a is a
True
>>> a is not b
True

Every object that is an instance of a user-defined class has a unique identity:

Binding an object to a new name using assignment does not create a new object:

Identity operators "is" and "is not" test if two expressions evaluate to the same object:

>>> c = a
>>> c is a
True

9

Every call to Account creates a new Account
instance. There is only one Account class.

>>> a.balance
0
>>> b.holder
'Jack'

Methods

Methods

11

Methods

Methods are functions defined in the suite of a class statement

11

Methods

Methods are functions defined in the suite of a class statement

class Account:

11

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):

11

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0

11

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

11

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):

11

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

These def statements create function objects as always, 
but their names are bound as attributes of the class

11

self should always be bound to an instance of the Account class

Methods

Methods are functions defined in the suite of a class statement

class Account:
 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance
 def withdraw(self, amount):
 if amount > self.balance:
 return 'Insufficient funds'
 self.balance = self.balance - amount
 return self.balance

These def statements create function objects as always, 
but their names are bound as attributes of the class

11

self should always be bound to an instance of the Account class

s

Invoking Methods

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

Defined with two parameters

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

Dot notation automatically supplies the first argument to a method

Defined with two parameters

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Dot notation automatically supplies the first argument to a method

Defined with two parameters

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Dot notation automatically supplies the first argument to a method

Invoked with one argument

Defined with two parameters

12

Invoking Methods

All invoked methods have access to the object via the self parameter, and so they can all
access and manipulate the object's state

class Account:
 ...
 def deposit(self, amount):
 self.balance = self.balance + amount
 return self.balance

>>> tom_account = Account('Tom')
>>> tom_account.deposit(100)
100

Dot notation automatically supplies the first argument to a method

Invoked with one argument

Defined with two parameters

12

Bound to self

Dot Expressions

13

Dot Expressions

Objects receive messages via dot notation

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

Dot expression

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

Dot expression
Call expression

13

Dot Expressions

Objects receive messages via dot notation

Dot notation accesses attributes of the instance or its class

<expression> . <name>

The <expression> can be any valid Python expression

The <name> must be a simple name

Evaluates to the value of the attribute looked up by <name> in the object
that is the value of the <expression>

tom_account.deposit(10)

Dot expression
Call expression

13

(Demo)

Attributes

(Demo)

Accessing Attributes

15

Accessing Attributes

Using getattr, we can look up an attribute using a string

15

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

15

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

15

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

15

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

15

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

•One of its instance attributes, or

15

Accessing Attributes

Using getattr, we can look up an attribute using a string

>>> getattr(tom_account, 'balance')
10

>>> hasattr(tom_account, 'deposit')
True

getattr and dot expressions look up a name in the same way

Looking up an attribute name in an object may return:

•One of its instance attributes, or

•One of the attributes of its class

15

Methods and Functions

16

Methods and Functions

Python distinguishes between:

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1004)
2015

16

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1004)
2015

16

Function: all arguments within parentheses

Methods and Functions

Python distinguishes between:

• Functions, which we have been creating since the beginning of the course, and

• Bound methods, which couple together a function and the object on which that
method will be invoked

Object + Function = Bound Method

>>> type(Account.deposit)
<class 'function'>
>>> type(tom_account.deposit)
<class 'method'>

>>> Account.deposit(tom_account, 1001)
1011
>>> tom_account.deposit(1004)
2015

16

Function: all arguments within parentheses

Method: One object before the dot and
other arguments within parentheses

Looking Up Attributes by Name

<expression> . <name>

17

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

17

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

17

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

17

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

17

Looking Up Attributes by Name

<expression> . <name>

To evaluate a dot expression:

1. Evaluate the <expression> to the left of the dot, which yields the object of
the dot expression

2. <name> is matched against the instance attributes of that object; if an
attribute with that name exists, its value is returned

3. If not, <name> is looked up in the class, which yields a class attribute value

4. That value is returned unless it is a function, in which case a bound method is
returned instead

17

Class Attributes

18

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

18

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

18

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

18

>>> tom_account = Account('Tom')

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

18

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

18

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

18

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02

Class Attributes

Class attributes are "shared" across all instances of a class because they are attributes
of the class, not the instance

class Account:

 interest = 0.02 # A class attribute

 def __init__(self, account_holder):
 self.balance = 0
 self.holder = account_holder

 # Additional methods would be defined here

The interest attribute is not part of
the instance; it's part of the class!

18

>>> tom_account = Account('Tom')
>>> jim_account = Account('Jim')
>>> tom_account.interest
0.02
>>> jim_account.interest
0.02

