
61A Lecture 29

Announcements

Data Processing

Data Processing

4

Data Processing

Many data sets can be processed sequentially:

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply

• A sequence has a finite, known length

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply

• A sequence has a finite, known length

• A sequence allows element selection for any element

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply

• A sequence has a finite, known length

• A sequence allows element selection for any element

Some important ideas in big data processing:

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply

• A sequence has a finite, known length

• A sequence allows element selection for any element

Some important ideas in big data processing:

• Implicit representations of streams of sequential data

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply

• A sequence has a finite, known length

• A sequence allows element selection for any element

Some important ideas in big data processing:

• Implicit representations of streams of sequential data

• Declarative programming languages to manipulate and transform data

4

Data Processing

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply

• A sequence has a finite, known length

• A sequence allows element selection for any element

Some important ideas in big data processing:

• Implicit representations of streams of sequential data

• Declarative programming languages to manipulate and transform data

• Distributed computing

4

Iterators

Iterators

6

Iterators

6

A container can provide an iterator that provides access to its elements in some order

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'
>>>	next(k)
'two'

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

Keys and values are iterated over in an
arbitrary order which is non-random, varies
across Python implementations, and depends on
the dictionary’s history of insertions and
deletions. If keys, values and items views are
iterated over with no intervening modifications
to the dictionary, the order of items will
directly correspond.

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'
>>>	next(k)
'two'

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

Keys and values are iterated over in an
arbitrary order which is non-random, varies
across Python implementations, and depends on
the dictionary’s history of insertions and
deletions. If keys, values and items views are
iterated over with no intervening modifications
to the dictionary, the order of items will
directly correspond.

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'
>>>	next(k)
'two'

>>>	v	=	iter(d.values())

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

Keys and values are iterated over in an
arbitrary order which is non-random, varies
across Python implementations, and depends on
the dictionary’s history of insertions and
deletions. If keys, values and items views are
iterated over with no intervening modifications
to the dictionary, the order of items will
directly correspond.

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'
>>>	next(k)
'two'

>>>	v	=	iter(d.values())
>>>	next(v)
1

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

Keys and values are iterated over in an
arbitrary order which is non-random, varies
across Python implementations, and depends on
the dictionary’s history of insertions and
deletions. If keys, values and items views are
iterated over with no intervening modifications
to the dictionary, the order of items will
directly correspond.

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'
>>>	next(k)
'two'

>>>	v	=	iter(d.values())
>>>	next(v)
1
>>>	next(v)
3

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

Keys and values are iterated over in an
arbitrary order which is non-random, varies
across Python implementations, and depends on
the dictionary’s history of insertions and
deletions. If keys, values and items views are
iterated over with no intervening modifications
to the dictionary, the order of items will
directly correspond.

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'
>>>	next(k)
'two'

>>>	v	=	iter(d.values())
>>>	next(v)
1
>>>	next(v)
3
>>>	next(v)
2

Iterators

6

A container can provide an iterator that provides access to its elements in some order

iter(iterable): 

next(iterator):

Return an iterator over the elements  
of an iterable value

Return the next element in an iterator

Iterators are always ordered, even if the container that produced them is not

Keys and values are iterated over in an
arbitrary order which is non-random, varies
across Python implementations, and depends on
the dictionary’s history of insertions and
deletions. If keys, values and items views are
iterated over with no intervening modifications
to the dictionary, the order of items will
directly correspond.

https://docs.python.org/3/library/stdtypes.html#dictionary-view-objects

>>>	s	=	[3,	4,	5]
>>>	t	=	iter(s)
>>>	next(t)
3
>>>	next(t)
4

>>>	u	=	iter(s)
>>>	next(u)
3
>>>	next(t)
5
>>>	next(u)
4

>>>	d	=	{'one':	1,	'two':	2,	'three':	3}
>>>	k	=	iter(d)
>>>	next(k)
'one'
>>>	next(k)
'three'
>>>	next(k)
'two'

>>>	v	=	iter(d.values())
>>>	next(v)
1
>>>	next(v)
3
>>>	next(v)
2

(Demo)

For Statements

The For Statement

8

The For Statement

for <name> in <expression>:
 <suite>

8

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which must evaluate to an iterable object

8

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which must evaluate to an iterable object
2.For each element in that sequence, in order:

8

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which must evaluate to an iterable object
2.For each element in that sequence, in order:
A.Bind <name> to that element in the first frame of the current environment

8

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which must evaluate to an iterable object
2.For each element in that sequence, in order:
A.Bind <name> to that element in the first frame of the current environment
B.Execute the <suite>

8

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which must evaluate to an iterable object
2.For each element in that sequence, in order:
A.Bind <name> to that element in the first frame of the current environment
B.Execute the <suite>

When executing a for statement, iter returns an iterator and next provides each item:

8

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which must evaluate to an iterable object
2.For each element in that sequence, in order:
A.Bind <name> to that element in the first frame of the current environment
B.Execute the <suite>

When executing a for statement, iter returns an iterator and next provides each item:

>>> counts = [1, 2, 3]
>>> for item in counts:
 print(item)
1
2
3

8

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which must evaluate to an iterable object
2.For each element in that sequence, in order:
A.Bind <name> to that element in the first frame of the current environment
B.Execute the <suite>

When executing a for statement, iter returns an iterator and next provides each item:

>>> counts = [1, 2, 3]
>>> for item in counts:
 print(item)
1
2
3

>>> counts = [1, 2, 3]
>>> items = iter(counts)
>>> try:
 while True:
 item = next(items)
 print(item)
 except StopIteration:
 pass # Do nothing
1
2
3

8

Processing Iterators

9

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

				return	True

Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):	
				ai	=	iter(a)	
				for	x	in	b:	
								try:	
												while	next(ai)	!=	x:	
																pass	#	do	nothing	
								except	StopIteration:	
												return	False	
				return	True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

				return	True

Built-In Iterator Functions

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable): Iterate over func(x) for x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable): Create a list containing all x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

Built-in Functions for Iteration

Many built-in Python sequence operations return iterators that compute results lazily

11

map(func, iterable):

filter(func, iterable):

zip(first_iter, second_iter):

reversed(sequence):

Iterate over func(x) for x in iterable

Iterate over x in iterable if func(x)

Iterate over co-indexed (x, y) pairs

Iterate over x in a sequence in reverse order

To view the contents of an iterator, place the resulting elements into a container

list(iterable):

tuple(iterable):

sorted(iterable):

Create a list containing all x in iterable

Create a tuple containing all x in iterable

Create a sorted list containing x in iterable

(Demo)

Generators

Generators and Generator Functions

13

Generators and Generator Functions

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

Generators and Generator Functions

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)

Generators and Generator Functions

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3

Generators and Generator Functions

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3
>>>	next(t)
-3

Generators and Generator Functions

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3
>>>	next(t)
-3
>>>	t
<generator	object	plus_minus	...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3
>>>	next(t)
-3
>>>	t
<generator	object	plus_minus	...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3
>>>	next(t)
-3
>>>	t
<generator	object	plus_minus	...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3
>>>	next(t)
-3
>>>	t
<generator	object	plus_minus	...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

13

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3
>>>	next(t)
-3
>>>	t
<generator	object	plus_minus	...>

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

13

(Demo)

>>>	def	plus_minus(x):
...					yield	x
...					yield	-x

>>>	t	=	plus_minus(3)
>>>	next(t)
3
>>>	next(t)
-3
>>>	t
<generator	object	plus_minus	...>

Iterable User-Defined Classes

14

Iterable User-Defined Classes

The special method __iter__ is called by the built-in iter() & should return an iterator

14

Iterable User-Defined Classes

The special method __iter__ is called by the built-in iter() & should return an iterator

14

>>>	list(Countdown(5))
[5,	4,	3,	2,	1]

Iterable User-Defined Classes

The special method __iter__ is called by the built-in iter() & should return an iterator

14

>>>	list(Countdown(5))
[5,	4,	3,	2,	1]
>>>	for	x	in	Countdown(3):
...					print(x)
3
2
1

Iterable User-Defined Classes

The special method __iter__ is called by the built-in iter() & should return an iterator

14

class	Countdown:
				def	__init__(self,	start):
								self.start	=	start

>>>	list(Countdown(5))
[5,	4,	3,	2,	1]
>>>	for	x	in	Countdown(3):
...					print(x)
3
2
1

Iterable User-Defined Classes

The special method __iter__ is called by the built-in iter() & should return an iterator

14

class	Countdown:
				def	__init__(self,	start):
								self.start	=	start

				def	__iter__(self):

>>>	list(Countdown(5))
[5,	4,	3,	2,	1]
>>>	for	x	in	Countdown(3):
...					print(x)
3
2
1

Iterable User-Defined Classes

The special method __iter__ is called by the built-in iter() & should return an iterator

14

class	Countdown:
				def	__init__(self,	start):
								self.start	=	start

				def	__iter__(self):
								v	=	self.start
								while	v	>	0:
												yield	v
												v	-=	1

>>>	list(Countdown(5))
[5,	4,	3,	2,	1]
>>>	for	x	in	Countdown(3):
...					print(x)
3
2
1

Generators & Iterators

Generators can Yield from Iterators

16

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

16

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

16

>>>	list(a_then_b([3,	4],	[5,	6]))	
[3,	4,	5,	6]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

16

def	a_then_b(a,	b):	
				for	x	in	a:	
								yield	x	
				for	x	in	b:	
								yield	x

>>>	list(a_then_b([3,	4],	[5,	6]))	
[3,	4,	5,	6]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

16

def	a_then_b(a,	b):	
				yield	from	a	
				yield	from	b

def	a_then_b(a,	b):	
				for	x	in	a:	
								yield	x	
				for	x	in	b:	
								yield	x

>>>	list(a_then_b([3,	4],	[5,	6]))	
[3,	4,	5,	6]

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

16

def	a_then_b(a,	b):	
				yield	from	a	
				yield	from	b

def	a_then_b(a,	b):	
				for	x	in	a:	
								yield	x	
				for	x	in	b:	
								yield	x

>>>	list(a_then_b([3,	4],	[5,	6]))	
[3,	4,	5,	6]

>>>	list(countdown(5))	
[5,	4,	3,	2,	1]	

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

16

def	a_then_b(a,	b):	
				yield	from	a	
				yield	from	b

def	a_then_b(a,	b):	
				for	x	in	a:	
								yield	x	
				for	x	in	b:	
								yield	x

def	countdown(k):	
				if	k	>	0:	
								yield	k	
								yield	from	countdown(k-1)

>>>	list(a_then_b([3,	4],	[5,	6]))	
[3,	4,	5,	6]

>>>	list(countdown(5))	
[5,	4,	3,	2,	1]	

Generators can Yield from Iterators

A yield from statement yields all values from an iterator or iterable (Python 3.3)

16

def	a_then_b(a,	b):	
				yield	from	a	
				yield	from	b

def	a_then_b(a,	b):	
				for	x	in	a:	
								yield	x	
				for	x	in	b:	
								yield	x

def	countdown(k):	
				if	k	>	0:	
								yield	k	
								yield	from	countdown(k-1)

>>>	list(a_then_b([3,	4],	[5,	6]))	
[3,	4,	5,	6]

>>>	list(countdown(5))	
[5,	4,	3,	2,	1]	

(Demo)

