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However, the sequence interface we used before does not always apply

• A sequence has a finite, known length

• A sequence allows element selection for any element

Some important ideas in big data processing:

• Implicit representations of streams of sequential data

• Declarative programming languages to manipulate and transform data
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When executing a for statement, iter returns an iterator and next provides each item:

>>> counts = [1, 2, 3] 
>>> for item in counts: 
        print(item) 
1 
2 
3

>>> counts = [1, 2, 3] 
>>> items = iter(counts) 
>>> try: 
        while True: 
            item = next(items) 
            print(item) 
    except StopIteration: 
        pass # Do nothing 
1 
2 
3

8



Processing Iterators

9



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:

												while	next(ai)	!=	x:
																pass	#	do	nothing

				return	True



Processing Iterators

9

A StopIteration exception is raised whenever next is called on an empty iterator

>>>	contains('strength',	'stent')
True
>>>	contains('strength',	'rest')
False
>>>	contains('strength',	'tenth')
True

def	contains(a,	b):	
				ai	=	iter(a)	
				for	x	in	b:	
								try:	
												while	next(ai)	!=	x:	
																pass	#	do	nothing	
								except	StopIteration:	
												return	False	
				return	True

def	contains(a,	b):
				ai	=	iter(a)
				for	x	in	b:
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																pass	#	do	nothing
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Iterate over func(x) for x in iterable
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Iterate over x in a sequence in reverse order
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class	Countdown:
				def	__init__(self,	start):
								self.start	=	start

				def	__iter__(self):
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												yield	v
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def	a_then_b(a,	b):	
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								yield	x	
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>>>	list(a_then_b([3,	4],	[5,	6]))	
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