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cd .../assets/slides && ls *.pdf | cut -f 1 -d - | sort -r | uniq -c
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Facebook datacenter (2014)

Typical hardware for big data applications:

Consumer-grade hard disks and processors

Independent computers are stored in racks

Concerns: networking, heat, power, monitoring

When using many computers, some will fail!
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An important early distributed processing system was MapReduce, developed at Google

Generic application structure that happened to capture many common data processing tasks

• Step 1: Each element in an input collection produces zero or more key-value pairs (map)

• Step 2: All key-value pairs that share a key are aggregated together (shuffle)

• Step 3: The values for a key are processed as a sequence (reduce)

Early applications: indexing web pages, training language models, & computing PageRank
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