
GROWTH AND NONLOCALS 4
COMPUTER SCIENCE 61A

September 29, 2016

1 Orders of Growth

When we talk about the efficiency of a function, we are often interested in the following:
if the size of the input grows, how does the runtime of the function change? And what
do we mean by ”runtime”? Let’s look at the following examples first:
def square(n):

return n * n

def factorial(n):
if n == 0:

return 1
return n * factorial(n - 1)

• square(1) requires one primitive operation: * (multiplication). square(100)
also requires one. No matter what input n we pass into square, it always takes
one operation.

input function call return value number of operations
1 square(1) 1*1 1
2 square(2) 2*2 1
...

...
...

...
100 square(100) 100*100 1

...
...

...
...

n square(n) n*n 1



DISCUSSION 4: GROWTH AND NONLOCALS Page 2
• factorial(1) requires one multiplication, but factorial(100) requires 100 mul-

tiplications. As we increase the input size of n, the runtime (number of operations)
increases linearly proportional to the input.

input function call return value number of operations
1 factorial(1) 1*1 1
2 factorial(2) 2*1*1 2
...

...
...

...
100 factorial(100) 100*99*. . . *1*1 100

...
...

...
...

n factorial(n) n*(n-1)*. . . *1*1 n

For expressing complexity, we use what is called big Θ (Theta) notation. For example, if
we say the running time of a function foo is in Θ(n2), we mean that the running time of
the process will grow proportionally with the square of the size of the input as it increases
to infinity.

• Ignore lower order terms: If a function requires n3 + 3n2 + 5n+ 10 operations with a
given input n, then the runtime of this function is Θ(n3). As n gets larger, the lower
order terms (10, 5n, and 3n2) all become insignificant compared to n3.

• Ignore constants: If a function requires 5n operations with a given input n, then the
runtime of this function is Θ(n). We are only concerned with how the runtime grows
asymptotically with the input, and since 5n is still asymptotically linear; the constant
factor does not make a difference in runtime analysis.

1.1 Kinds of Growth

Here are some common orders of growth, ranked from no growth to fastest growth:

• Θ(1) — constant time takes the same amount of time regardless of input size

• Θ(log n) — logarithmic time

• Θ(n) — linear time

• Θ(n2), Θ(n3), etc. — polynomial time

• Θ(2n) — exponential time (considered “intractable”; these are really, really horrible)

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 3
1.2 Questions

What is the order of growth for the following functions?
1. def sum_of_factorial(n):

if n == 0:
return 1

else:
return factorial(n) + sum_of_factorial(n - 1)

2. def fib_recursive(n):
if n == 0 or n == 1:

return n
else:

return fib_recursive(n - 1) + fib_recursive(n - 2)

3. def fib_iter(n):
prev, curr, i = 0, 1, 0
while i < n:

prev, curr = curr, prev + curr
i += 1

return prev

4. def bonk(n):
total = 0
while n >= 2:

total += n
n = n / 2

return total

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 4
5. def mod_7(n):

if n % 7 == 0:
return 0

else:
return 1 + mod_7(n - 1)

6. def bar(n):
if n % 2 == 1:

return n + 1
return n

def foo(n):
if n < 1:

return 2
if n % 2 == 0:

return foo(n - 1) + foo(n - 2)
else:

return 1 + foo(n - 2)

What is the order of growth of foo(bar(n))?

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 5

2 Nonlocal

Until now, you’ve been able to access variables in parent frames, but you have not been
able to modify them. The nonlocal keyword can be used to modify a variable in the
parent frame outside the current frame. For example, consider stepper, which uses
nonlocal to modify num:
def stepper(num):

def step():
nonlocal num # declares num as a nonlocal variable
num = num + 1 # modifies num in the stepper frame
return num

return step

However, there are two important caveats with nonlocal variables:

• Global variables cannot be modified using the nonlocal keyword.

• Variables in the current frame cannot be overridden using the nonlocal keyword.
This means we cannot have both a local and nonlocal variable with the same names
in a single frame.

2.1 Some Common Misconceptions

1. What is wrong with the following code?
a = 5
def another_add_one():

nonlocal a
a += 1

another_add_one()

2. What is wrong with the following code?
def adder(x):

def add(y):
nonlocal x, y
x += y
return x

return add
adder(2)(3)

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 6
2.2 Environment Diagrams

1. Draw the environment diagram for the code below:
def stepper(num):

def step():
nonlocal num
num = num + 1
return num

return step

s = stepper(3)
s()
s()

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 7
2.3 Questions

1. The bathtub below simulates an epic battle between Finn and Kylo Ren over a popu-
lace of rubber duckies. Fill in the body of ducky so that all doctests pass.
def bathtub(n):

"""
>>> annihilator = bathtub(500) # the force awakens...
>>> kylo_ren = annihilator(10)
>>> kylo_ren()
490 rubber duckies left
>>> finn = annihilator(-20)
>>> finn()
510 rubber duckies left
>>> kylo_ren()
500 rubber duckies left
"""
def ducky_annihilator(rate):

def ducky():

return ducky
return ducky_annihilator

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 8
2. Write a function that updates and prints a value x based on input functions.
def memory(n):

"""
>>> f = memory(10)
>>> f = f(lambda x: x * 2)
20
>>> f = f(lambda x: x - 7)
13
>>> f = f(lambda x: x > 5)
True
"""

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 9

3 Mutable Lists

Let’s imagine you order a mushroom and cheese pizza from Domino’s, and that they
represent your order as a list:
>>> pizza1 = ['cheese', 'mushrooms']

A couple minutes later, you realize that you really want onions on the pizza. Based on
what we know so far, Domino’s would have to build an entirely new list to add onions:
>>> pizza2 = pizza1 + ['onions'] # creates a new python list
>>> pizza2
['cheese', mushrooms', 'onions']
>>> pizza1 # the original list is unmodified
['cheese', 'mushrooms']

But this is silly, considering that all Domino’s had to do was add onions on top of pizza1
instead of making an entirely new pizza2.

Python actually allows you to mutate some objects, includings lists and dictionaries. Mu-
tability means that the object’s contents can be changed. So instead of building a new
pizza2, we can use pizza1.append(’onions’) to mutate pizza1.
>>> pizza1.append('onions')
>>> pizza1
['cheese', 'mushrooms', 'onions']

Although lists and dictionaries are mutable, many other objects, such as numeric types,
tuples, and strings, are immutable, meaning they cannot be changed once they are created.
We can use the familiar indexing operator to mutate a single element in a list. For instance
lst[4]=’hello’ would change the fifth element in lst to be the string ’hello’. In
addition to the indexing operator, lists have many mutating methods. List methods are
functions that are bound to a specific list. Some useful list methods are listed here:

1. append(el) adds el to the end of the list

2. insert(i, el) insert el at index i (does not replace element but adds a new one)

3. remove(el) removes the first occurrence of el in list, otherwise errors

4. pop(i) removes and returns the element at index i

List methods are called via dot notation, as in:
>>> sharks = ['joe thornton', 'patrick marleau']
>>> sharks.append('logan couture')
>>> sharks.pop(1)
'patrick marleau'
>>> sharks
['joe thornton', 'logan couture']

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 10
3.1 Questions

1. Consider the following definitions and assignments and determine what Python would
output for each of the calls below if they were evaluated in order. It may be helpful to
draw the box and pointers diagrams to the right in order to keep track of the state.
>>> lst1 = [1, 2, 3]
>>> lst2 = [1, 2, 3]
>>> lst1 == lst2 #compares each value

>>> lst1 is lst2 #compares references

>>> lst2 = lst1
>>> lst2 is lst1

>>> lst1.append(4)
>>> lst1

>>> lst2

>>> lst2[1] = 42
>>> lst2

>>> lst1 = lst1 + [5]
>>> lst1 == lst2

>>> lst1

>>> lst2

>>> lst2 is lst1

CS 61A Fall 2016



DISCUSSION 4: GROWTH AND NONLOCALS Page 11
2. Write a function that removes all instances of an element from a list.
def remove_all(el, lst):

"""
>>> x = [3, 1, 2, 1, 5, 1, 1, 7]
>>> remove_all(1, x)
>>> x
[3, 2, 5, 7]
"""

3. Write a function that takes in two values x and el, and a list, and adds as many el’s
to the end of the list as there are x’s.
def add_this_many(x, el, lst):

""" Adds el to the end of lst the number of times x occurs
in lst.
>>> lst = [1, 2, 4, 2, 1]
>>> add_this_many(1, 5, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5]
>>> add_this_many(2, 2, lst)
>>> lst
[1, 2, 4, 2, 1, 5, 5, 2, 2]
"""

CS 61A Fall 2016


