
FINAL REVIEW 11
COMPUTER SCIENCE 61A

December 1, 2016

1 Mutable Sequences

1. For each row below, fill in the blanks in the output displayed by the interactive Python
interpreter when the expression is evaluated. Expressions are evaluated in order, and
expressions may affect later expressions.
>>> cats = [1, 2]
>>> dogs = [cats, cats.append(23), list(cats)]
>>> cats

>>> dogs[1] = list(dogs)
>>> dogs[1]

>>> dogs[0].append(2)
>>> cats

>>> dogs[2].extend([list(cats).pop(0), 3])
>>> dogs[3]

>>> dogs

DISCUSSION 11: FINAL REVIEW Page 2

2 Environment Diagram

1. (Fall 2012) Draw the environment diagram.

def box(a):
def box(b):

def box(c):
nonlocal a
a = a + c
return (a, b)

return box
gift = box(1)
return (gift(2), gift(3))

box(4)

CS 61A Fall 2016

DISCUSSION 11: FINAL REVIEW Page 3

3 Object-Oriented Programming

1. Assume these commands are entered in order. What would Python output?
>>> class Foo:
... def __init__(self, a):
... self.a = a
... def garply(self):
... return self.baz(self.a)
>>> class Bar(Foo):
... a = 1
... def baz(self, val):
... return val
>>> f = Foo(4)
>>> b = Bar(3)
>>> f.a

>>> b.a

>>> f.garply()

>>> b.garply()

>>> b.a = 9
>>> b.garply()

>>> f.baz = lambda val: val * val
>>> f.garply()

CS 61A Fall 2016

DISCUSSION 11: FINAL REVIEW Page 4

4 Mutable Linked Lists and Trees

1. Write a recursive function flip two that takes as input a linked list lnk and mutates
lnk so that every pair is flipped.
def flip_two(lnk):

"""
>>> one_lnk = Link(1)
>>> flip_two(one_lnk)
>>> one_lnk
Link(1)
>>> lnk = Link(1, Link(2, Link(3, Link(4, Link(5)))))
>>> flip_two(lnk)
>>> lnk
Link(2, Link(1, Link(4, Link(3, Link(5)))))
"""

2. Write a function flatten that given a Tree t, will return a linked list of the elements
of t, ordered by level. Entries on the same level should be ordered from left to right.
For example, the following tree will return the linked list <1 2 3 4 5 6 7>.

1

2

5 6

3 4

7

def flatten(t):

CS 61A Fall 2016

DISCUSSION 11: FINAL REVIEW Page 5

5 Scheme

1. Consider the following Scheme tree data abstraction.
(define (make-tree root branches) (cons root branches))
(define (root tree) (car tree))
(define (branches tree) (cdr tree))
(define tree 'below-example)
; 5
; +--------+--------+
; | | |
; 6 7 2
; +--+--+ | +--+--+
; | | | | |
; 9 8 1 6 4
; |
; |
; 3

Write a procedure tree-sums that takes a tree of numbers (like the one above) and
outputs a list of sums from following each possible path from root to leaf.

Hint: You may find the flatten procedure helpful.
(define (flatten lst)

(cond ((null? lst) nil)
((list? (car lst)) (append (flatten (car lst)) (

flatten (cdr lst))))
(else (cons (car lst) (flatten (cdr lst))))))

(define (tree-sums tree)

(if ___

(map (lambda (x) _____________________________________)

__)))

scm> (flatten '(0 (1) ((2)) (3 ((4)))))
(0 1 2 3 4)
scm> (tree-sums tree)
(20 19 13 16 11)

CS 61A Fall 2016

DISCUSSION 11: FINAL REVIEW Page 6

6 Streams

1. Implement the unique-stream procedure, which takes in a stream and returns new
stream that contains each element of the input stream once. Only the first occurrence
of each number should be included such that it is in the order that it appears in the
original stream. You may want to use filter-stream defined below.
(define (filter-stream f s)

(cond
((null? s) nil)
((f (car s))
(cons-stream (car s)

(filter-stream f (cdr-stream s))))
(else (filter-stream f (cdr-stream s)))))

(define (unique-stream s)

take is a procedure that returns a Scheme list containing the first n elements a stream
s.
(define (take n s)

(if (or (= n 0) (null? s))
nil
(cons (car s) (take (- n 1) (cdr-stream s)))))

scm> (take 10 (unique-stream (lst-to-stream '(1 3 2 3 4 2))))
(1 3 2 4)
scm> (take 10 (unique-stream (lst-to-stream '(4 4 5 5 6 5))))
(4 5 6)

CS 61A Fall 2016

DISCUSSION 11: FINAL REVIEW Page 7

7 Generators

1. Write a generator function that yields functions that are repeated applications of a
one-argument function f. The first function yielded should apply f 0 times (the iden-
tity function), the second function yielded should apply f once, etc.
def repeated(f):

"""
>>> [g(1) for _, g in
... zip(range(5), repeated(double))]
[1, 2, 4, 8, 16]
"""

g = ______________________________

while True:

__

__

2. Ben Bitdiddle proposes the following alternate solution. Does it work?
def ben_repeated(f):

g = lambda x: x
while True:

yield g
g = lambda x: f(g(x))

CS 61A Fall 2016

DISCUSSION 11: FINAL REVIEW Page 8

8 SQL

1. You’re trying to re-organize your music library! The table tracks below contains
song titles and the corresponding album. Create another table tracklist with two
columns: the album and a comma-separated list of all songs from that album in al-
phabetical.

create table tracks as
select "Human" as title, "The Definition" as album union
select "Simple and Sweet", "The Definition" union
select "Paper Planes", "Translations Through Speakers";

create table tracklist as
with

songs(album, total) as (

),

__ as (

)

select __

where __;

sqlite3> select * from tracklist order by album;
The Definition|Human, Simple and Sweet
Translations Through Speakers|Paper Planes

CS 61A Fall 2016

