## Recursive Objects ## # Q2 def list_to_link(lst): """Takes a Python list and returns a Link with the same elements. >>> link = list_to_link([1, 2, 3]) >>> print_link(link) <1 2 3> """ "*** YOUR CODE HERE ***" # Q3 def link_to_list(link): """Takes a Link and returns a Python list with the same elements. >>> link = Link(1, Link(2, Link(3, Link(4)))) >>> link_to_list(link) [1, 2, 3, 4] >>> link_to_list(Link.empty) [] """ "*** YOUR CODE HERE ***" # Q4 def remove_all(link , value): """Remove all the nodes containing value. Assume there exists some nodes to be removed and the first element is never removed. >>> l1 = Link(0, Link(2, Link(2, Link(3, Link(1, Link(2, Link(3))))))) >>> print_link(l1) <0 2 2 3 1 2 3> >>> remove_all(l1, 2) >>> print_link(l1) <0 3 1 3> >>> remove_all(l1, 3) >>> print_link(l1) <0 1> """ "*** YOUR CODE HERE ***" # Linked List Class class Link: """A linked list. >>> s = Link(1, Link(2, Link(3))) >>> s.first 1 >>> s.rest Link(2, Link(3)) """ empty = () def __init__(self, first, rest=empty): assert rest is Link.empty or isinstance(rest, Link) self.first = first self.rest = rest def __repr__(self): if self.rest is Link.empty: return 'Link({})'.format(self.first) else: return 'Link({}, {})'.format(self.first, repr(self.rest)) def __len__(self): """ Return the number of items in the linked list. >>> s = Link(1, Link(2, Link(3))) >>> len(s) 3 >>> s = Link.empty >>> len(s) 0 """ return 1 + len(self.rest) def __getitem__(self, i): """Returning the element found at index i. >>> s = Link(1, Link(2, Link(3))) >>> s[1] 2 >>> s[2] 3 """ if i == 0: return self.first else: return self.rest[i-1] def __setitem__(self, index, element): """Sets the value at the given index to the element >>> s = Link(1, Link(2, Link(3))) >>> s[1] = 5 >>> s Link(1, Link(5, Link(3))) >>> s[4] = 5 Traceback (most recent call last): ... IndexError """ if index == 0: self.first = element elif self.rest is Link.empty: raise IndexError else: self.rest[index - 1] = element def __contains__(self, e): return self.first == e or e in self.rest def map(self, f): self.first = f(self.first) if self.rest is not Link.empty: self.rest.map(f) def print_link(link): """Print elements of a linked list link. >>> link = Link(1, Link(2, Link(3))) >>> print_link(link) <1 2 3> >>> link1 = Link(1, Link(Link(2), Link(3))) >>> print_link(link1) <1 <2> 3> >>> link1 = Link(3, Link(Link(4), Link(5, Link(6)))) >>> print_link(link1) <3 <4> 5 6> """ print('<' + helper(link).rstrip() + '>') def helper(link): if link == Link.empty: return '' elif isinstance(link.first, Link): return '<' + helper(link.first).rstrip() + '> ' + helper(link.rest) else: return str(link.first) +' '+ helper(link.rest) # Tree Class class Tree: def __init__(self, root, branches=[]): for c in branches: assert isinstance(c, Tree) self.root = root self.branches = branches def __repr__(self): if self.branches: branches_str = ', ' + repr(self.branches) else: branches_str = '' return 'Tree({0}{1})'.format(self.root, branches_str) def is_leaf(self): return not self.branches def print_tree(t, indent=0): """Print a representation of this tree in which each node is indented by two spaces times its depth from the entry. >>> print_tree(Tree(1)) 1 >>> print_tree(Tree(1, [Tree(2)])) 1 2 >>> numbers = Tree(1, [Tree(2), Tree(3, [Tree(4), Tree(5)]), Tree(6, [Tree(7)])]) >>> print_tree(numbers) 1 2 3 4 5 6 7 """ print(' ' * indent + str(t.root)) for b in t.branches: print_tree(b, indent + 1)