61A Lecture 14

Announcements

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

. LN]

.]

“““

. Tay,
*
.
.

0’ \
s Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
) ™
p >>> withdraw(25) << second withdrawal of
Different]:> 50 the same amount)
return lue!
L et vatue >>> withdraw(60)

"Insufficient funds'

>>> withdraw(15) Where's this balance
35 stored?

>>> withdraw = make_withdraw(100) Within the parent frame A function has a body and
of the function! a parent environment

Persistent Local State Using Environments

-

All calls to the
same function
have the same

parent

Global frame

fl:

f2:

Sk

make_withdraw]

func make_withdraw(balance) [parent=Globall]

Mmdmw{i

make_withdraw [parent=Global]

babnce}SO

func withdraw(amount) [parent=fl]

withdraw
Return

— | The parent frame contains the balance,
value the local state of the withdraw functio

J

withdraw [parent=f1l]

Return
value »75

amount 35<1Every call decreases the same balance

by (a possibly different) amount

|

withdraw [parent=fl]

amount 25

Return
value 50

Interactive Diagram

Reminder: Local Assignment

def percent_difference(x, y):

e A0 : Assignment binds name(s) to
return 100 * difference / x| y51ye(s) in the first frame of

diff = percent_difference (40, 50) the current environment

Global frame func percent_difference(x, y) [parent=Global]

percent_difference

fl: percent_difference [parent=Global]
x 40

* difference 10

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right

2. Bind the names on the left to the resulting values in the current frame

Interactive Diagram

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

nonlocal balance << the body of the function in which it is re-assigned

def withdraw(amount):
<{: Declare the name "balance" nonlocal at the top of :

if amount > balance:

return 'Insufficient funds'

balance = balance - amount Re-bind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

(Demo)

Non-Local Assignment

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the

. first non-local frame of the current environment in which that name is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

http://www.python.org/dev/peps/pep—-3104/

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o'x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
*''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
o'x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x
o'"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal x

*'x" is bound in a SyntaxError: name 'x' is parameter and nonlocal
non-local frame

o"x" also bound locally

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

_balance = balance - amount
return balance 1: Local assignment J

return withdraw

wd
wd (5)

make_withdraw(20)

UnboundLocalError: local variable 'balance’' referenced before assignment

Interactive Diagram

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame

make_withdraw_list |

fl:

Name-value binding
cannot change
because there is no
nonlocal statement

(. J

f2: withdraw [parent=f1l]

make_withdraw_list [parent=Global]

func make_withdraw_list(balance) [parent=Global]

Mutable value

can change

withdraw ‘ 0
a\\\\\\\ ; s

................

\func withdraw(amount) [parent=fl]

leO
withdraw | def make_withdraw_list(balance):
b (Name bound [~ P = [batance]
Return | outside of def withdraw(amount):
value withdraw def i amoung > BiSjs "
’ N Y, return 'Insufficient funds'
1 ———>b[0] = b[O] - amount
E _ement return b[0]
mount |25 assignment return withdraw
ameount | \Fhanges a llsﬁj
Renm |75 withdraw = make_withdraw_list(100)
vale | withdraw(25)

Interactive Diagram

Multiple Mutable Functions

(Demo)

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

*Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

Interactive Diagram

