61A Lecture 14

Announcements

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

>>> withdraw(25)

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

>>> withdraw(25)
75

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

. Argument:
;;> withdraw(25) amount to withdraw

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75

>>> withdraw(25)
50

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

remaining balance 75 J

~
Argument:
Return value: >>> withdraw(25) amount to withdraw

50 the same amount

.)
>>> W1thdraW(25)<1:Second withdrawal of

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
- Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
) ™
p >>> withdraw(25) << second withdrawal of
Different 50 the same amount)

return value!

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
- Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
) ™
p >>> withdraw(25) << second withdrawal of
Different 50 the same amount)

return value!
L >>> withdraw(60)

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
@ Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75 J
S
. N
p >>> withdraw(25) << second withdrawal of
Different]:> 50 the same amount)
return lue!
L et vatue >>> withdraw(60)

"Insufficient funds'

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

~
@ Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75 J
S
. N
p >>> withdraw(25) << second withdrawal of
Different]:> 50 the same amount)
return lue!
L et vatue >>> withdraw(60)

"Insufficient funds'

Where's this balance
stored?

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

.................
" gy
. "
.]
.....
....
.
.

0’ \
@ Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
) ™
p >>> withdraw(25) << second withdrawal of
Different]:> 50 the same amount)
return lue!
L et vatue >>> withdraw(60)

"Insufficient funds'

Where's this balance
stored?

">>> withdraw = make_withdraw(100)

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

.................
" gy
. "
.]
.....
....
.
.

0’ \
s Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
) ™
p >>> withdraw(25) << second withdrawal of
Different]:> 50 the same amount)
return lue!
L et vatue >>> withdraw(60)

"Insufficient funds'

Where's this balance
stored?

->>> withdraw = make withdraw(100) Within the parent frame
of the function!

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

. LN]

.]

“““

. Tay,
*
.
.

0’ \
s Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
) ™
p >>> withdraw(25) << second withdrawal of
Different]:> 50 the same amount)
return lue!
L et vatue >>> withdraw(60)

"Insufficient funds'

Where's this balance
stored?

>>> withdraw = make_withdraw(100) Within the parent frame A function has a body and
of the function! a parent environment

Persistent Local State Using Environments

Global frame

fl:

f2:

Sk

make_withdraw \ _
Mmdmw{i

make_withdraw [parent=Global]

balance
withdraw

Return
value

withdraw [parent=fl]

amount

Return
value

withdraw [parent=fl]

amount

Return
value

50

IR

R

50

&

func make_withdraw(balance) [parent=Globall]

func withdraw(amount) [parent=fl]

Interactive Diagram

Persistent Local State Using Environments

Global frame

fl:

f2:

Sk

make_withdraw]

Mmdmw{i

make_withdraw [parent=Global]

50

balance
withdraw
Return

value |

withdraw [parent=f1l]

amount

Return
value

withdraw [parent=fl]

amount

Return
value

25
75

25

50

func make_withdraw(balance) [parent=Globall]

func withdraw(amount) [parent=fl]

The parent frame contains the balance,
the local state of the withdraw function

Interactive Diagram

Persistent Local State Using Environments

Global frame

fl:

f2:

Sk

make_withdraw]
Mmdmw{i

func make_withdraw(balance) [parent=Globall]

func withdraw(amount) [parent=fl]

make_withdraw [parent=Global]

balance

withdraw
Return

value |

withdraw [parent=f1l]

amount
Return

value |

withdraw [parent=fl]

amount

Return
value

150

— | The parent frame contains the balance,
the local state of the withdraw function

25 Every call decreases the same balance

75 by (a possibly different) amount

25

50

Interactive Diagram

Persistent Local State Using Environments

-

All calls to the
same function
have the same

parent

Global frame

fl:

f2:

Sk

make_withdraw]

func make_withdraw(balance) [parent=Globall]

Mmdmw{i

make_withdraw [parent=Global]

babnce}SO

func withdraw(amount) [parent=fl]

withdraw
Return

— | The parent frame contains the balance,
value the local state of the withdraw functio

J

withdraw [parent=f1l]

Return
value »75

amount 35<1Every call decreases the same balance

by (a possibly different) amount

|

withdraw [parent=fl]

amount 25

Return
value 50

Interactive Diagram

Reminder: Local Assignment

def percent_difference(x, y):
difference = abs(x-y)
return 100 * difference / x

diff = percent_difference(40, 50)

Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
x 40

y 50

difference 10

Interactive Diagram

Reminder: Local Assignment

def percent_difference(x, y):

| difference 2.20800y) Assignment binds name(s) to
return 160 * difference / x fyaiye(s) in the first frame of
diff = percent_difference(40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
x 40

y 50

difference 10

Interactive Diagram

Reminder: Local Assignment

def percent_difference(x, y):

| difference 2.20800y) Assignment binds name(s) to
return 160 * difference / x fyaiye(s) in the first frame of
diff = percent_difference(40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
X 40

* difference 10

Interactive Diagram

Reminder: Local Assignment

def percent_difference(x, y):

| difference 2.20800y) Assignment binds name(s) to
return 160 * difference / x fyaiye(s) in the first frame of
diff = percent_difference (40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference

fl: percent_difference [parent=Global]
x 40

* difference 10

Execution rule for assignment statements:

Interactive Diagram

Reminder: Local Assignment

def percent_difference(x, y):

e A0 : Assignment binds name(s) to
return 100 * difference / x| y51ye(s) in the first frame of

diff = percent_difference (40, 50) the current environment

Global frame func percent_difference(x, y) [parent=Global]

percent_difference

fl: percent_difference [parent=Global]
x 40

* difference 10

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right

2. Bind the names on the left to the resulting values in the current frame

Interactive Diagram

Non-Local Assignment & Persistent Local State

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

def withdraw(amount):

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):
"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):
"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

if amount > balance:

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

if amount > balance:

return 'Insufficient funds'

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""
def withdraw(amount):

nonlocal balance

if amount > balance:

return 'Insufficient funds'

balance = balance - amount

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):
"""Return a withdraw function with a starting balance."""
def withdraw(amount):
nonlocal balance
if amount > balance:
return 'Insufficient funds'
balance = balance - amount

return balance

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):
"""Return a withdraw function with a starting balance."""
def withdraw(amount):
nonlocal balance
if amount > balance:
return 'Insufficient funds'
balance = balance - amount
return balance

return withdraw

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""

def withdraw(amount):
Declare the name "balance" nonlocal at the top of
nonlocal balance the body of the function in which it is re-assigned

if amount > balance:

return 'Insufficient funds'
balance = balance - amount
return balance

return withdraw

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

nonlocal balance << the body of the function in which it is re-assigned

def withdraw(amount):
<{: Declare the name "balance" nonlocal at the top of :

if amount > balance:

return 'Insufficient funds'

balance = balance - amount Re-bind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

nonlocal balance << the body of the function in which it is re-assigned

def withdraw(amount):
<{: Declare the name "balance" nonlocal at the top of :

if amount > balance:

return 'Insufficient funds'

balance = balance - amount Re-bind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

(Demo)

Non-Local Assignment

The Effect of Nonlocal Statements

nonlocal <name>

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frame of the current environment in which that name is bound.

The Effect of Nonlocal Statements

nonlocal <name>

Python Docs: an
"enclosing scope"

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Python Docs: an
"enclosing scope"

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Effect: Future assignments to that name change its pre-existing binding in the

. first non-local frame of the current environment in which that name is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the

. first non-local frame of the current environment in which that name is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

Names listed in a nonlocal statement must not collide with pre-existing
bindings in the local scope.

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the

. first non-local frame of the current environment in which that name is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the

. first non-local frame of the current environment in which that name is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the

. first non-local frame of the current environment in which that name is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

http://www.python.org/dev/peps/pep—-3104/

The Many Meanings of Assignment Statements

X =2

The Many Meanings of Assignment Statements

X =2

Status Effect

The Many Meanings of Assignment Statements

Status Effect

*No nonlocal statement
o'x" is not bound locally

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in

o'x" is not bound locally the first frame of the current environment

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
e'x" is not bound locally the first frame of the current environment

*No nonlocal statement
o"x" is bound locally

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o'x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame

*''x" is bound locally of the current environment

The Many Meanings of Assignment Statements

X =2
Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o'x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
*''x" is bound locally of the current environment

enonlocal x
o'"x" is bound in a non-local
frame

The Many Meanings of Assignment Statements

Status

*No nonlocal statement
o'x" is not bound locally

X =2

Effect

Create a new binding from name "x" to object 2 in
the first frame of the current environment

*No nonlocal statement
o"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current environment

enonlocal x
o'"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which "x" is bound

The Many Meanings of Assignment Statements

Status

*No nonlocal statement
o'x" is not bound locally

X =2

Effect

Create a new binding from name "x" to object 2 in
the first frame of the current environment

*No nonlocal statement
o"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current environment

enonlocal x
o'"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which "x" is bound

enonlocal x
o'"x" is not bound in a non-
local frame

The Many Meanings of Assignment Statements

Status

*No nonlocal statement
o'x" is not bound locally

X =2

Effect

Create a new binding from name "x" to object 2 in
the first frame of the current environment

*No nonlocal statement
o"x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current environment

enonlocal x
o'"x" is bound in a non-local
frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which "x" is bound

enonlocal x
o'"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o'x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
*''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
o'x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x
o'"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal x

o"x" is bound in a
non-local frame

e"x" also bound locally

The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o'x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
*''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
o'x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x
o'"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal x

*'x" is bound in a SyntaxError: name 'x' is parameter and nonlocal
non-local frame

o"x" also bound locally

Python Particulars

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'
balance = balance - amount
return balance
return withdraw

wd
wd (5)

make_withdraw(20)

Interactive Diagram

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

_balance = balance - amount
return balance T: Local assignment J

return withdraw

wd
wd (5)

make_withdraw(20)

Interactive Diagram

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

_balance = balance - amount
return balance 1: Local assignment J

return withdraw

wd
wd (5)

make_withdraw(20)

UnboundLocalError: local variable 'balance’' referenced before assignment

Interactive Diagram

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

def make_withdraw_list(balance):

b = [balance]

def withdraw(amount):
if amount > b[0O]:

return 'Insufficient funds'

b[O0] = b[@] - amount
return b[0]

return withdraw

withdraw = make_withdraw_1ist(100)
withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

def make_withdraw_list(balance):
b = [balance]

Name bound def withdraw(amount):
outside of . :
- thd def if amount > b[0]:
wl raw ae return 'Insufficient funds'

b[@] = b[O@] - amount
return b[0]
return withdraw

withdraw = make_withdraw_1ist(100)
withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement

\changes a list

def make_withdraw_list(balance):

ST - - [balance]
outside of def v.nthdraw(amount):
. if amount > b[0O]:
\Wlthdraw def) return 'Insufficient funds'
———b[0] = b[O] - amount
Elgment return b[0]
assignment return withdraw

J
withdraw = make_withdraw_1ist(100)

withdraw(25)

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame

fl:

2L

func make_withdraw_list(balance) [parent=Global]

make_withdraw_list » list

withdraw ‘ 0
\ 75

make_withdraw_list [parent=Global] \\\
func withdraw(amount) [parent=fl]

balance (100
withdraw | def make_withdraw_list(balance):
b [Name bound [~ P = [balance]
Return | outside of def withdraw(amount):
value withdraw def i amouns = GOl =
’ N Y, return 'Insufficient funds'
———>b[0] = b[0] - amount
withdraw [parent=f1] Elﬁment return b[0]
mount |25 assignment return withdraw
ameount | \Fhanges a llsﬁj
Re“f“ 75 Withdraw = make_withdraw_list(100)
value

withdraw(25)

Interactive Diagram

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance) [parent=Global]

make_withdraw_list » list

withdraw ‘ 0
\ 75

fl: make_withdraw_list [parent=Global] \
s Sbalance 100 func withdraw(amount) [parent=fl]
Name-value binding withdraw def make_withdraw_list(balance):
cannot change b (Name bound = = [balance]
because there is no » tsid £ def withdraw(amount):
nonlocal statement return outside 0 if amount > b[0]:
value | withdraw def , . ,
L) _ _J return 'Insufficient funds
e ——Db[0] = b[O] - amount
f2: withdraw [parent=f1] Element return b[0]
assignment return withdraw
amount |25 changes a list
Return |5¢ - “Withdraw = make_withdraw_1ist(100)
value | withdraw(25)

Interactive Diagram

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame

make_withdraw_list |

fl:

Name-value binding
cannot change
because there is no
nonlocal statement

(. J

f2: withdraw [parent=f1l]

make_withdraw_list [parent=Global]

func make_withdraw_list(balance) [parent=Global]

Mutable value

can change

withdraw ‘ 0
a\\\\\\\ ; s

................

\func withdraw(amount) [parent=fl]

leO
withdraw | def make_withdraw_list(balance):
b (Name bound [~ P = [batance]
Return | outside of def withdraw(amount):
value withdraw def i amoung > BiSjs "
’ N Y, return 'Insufficient funds'
1 ———>b[0] = b[O] - amount
E _ement return b[0]
mount |25 assignment return withdraw
ameount | \Fhanges a llsﬁj
Renm |75 withdraw = make_withdraw_list(100)
vale | withdraw(25)

Interactive Diagram

Multiple Mutable Functions

(Demo)

Referential Transparency, Lost

Interactive Diagram

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

Interactive Diagram

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

Interactive Diagram

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

Interactive Diagram

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))
mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

Interactive Diagram

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))
mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

*Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

Interactive Diagram

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

*Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

Interactive Diagram

Referential Transparency, Lost

Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

mul(26 , add(3, 5))

*Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

Interactive Diagram

