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A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100
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s Argument:
Return value: >>> withdraw(25) amount to withdraw

remaining balance 75 J
\
) ™
p >>> withdraw(25) << second withdrawal of
Different ]:> 50 the same amount )
return lue!
L et vatue >>> withdraw(60)

"Insufficient funds'

Where's this balance
stored?

>>> withdraw = make_withdraw(100) Within the parent frame A function has a body and
of the function! a parent environment
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Persistent Local State Using Environments

-

All calls to the
same function
have the same

parent

Global frame
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make_withdraw [parent=Global]
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Reminder: Local Assignment

def percent_difference(x, y):
difference = abs(x-y)
return 100 * difference / x

diff = percent_difference(40, 50)

Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
x 40

y 50

difference 10

Interactive Diagram



Reminder: Local Assignment

def percent_difference(x, y):

| difference 2.20800y) Assignment binds name(s) to
return 160 * difference / x fyaiye(s) in the first frame of
diff = percent_difference(40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
x 40

y 50

difference 10

Interactive Diagram



Reminder: Local Assignment

def percent_difference(x, y):

| difference 2.20800y) Assignment binds name(s) to
return 160 * difference / x fyaiye(s) in the first frame of
diff = percent_difference(40, 50) the current environment
Global frame func percent_difference(x, y) [parent=Globall]

percent_difference |

fl: percent_difference [parent=Global]
X 40

* difference 10

Interactive Diagram



Reminder: Local Assignment
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Reminder: Local Assignment

def percent_difference(x, y):

e A0 : Assignment binds name(s) to
return 100 * difference / x| y51ye(s) in the first frame of

diff = percent_difference (40, 50) the current environment

Global frame func percent_difference(x, y) [parent=Global]

percent_difference

fl: percent_difference [parent=Global]
x 40

* difference 10

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right

2. Bind the names on the left to the resulting values in the current frame

Interactive Diagram
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Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance.

nonlocal balance << the body of the function in which it is re-assigned

def withdraw(amount):
<{: Declare the name "balance" nonlocal at the top of :

if amount > balance:

return 'Insufficient funds'

balance = balance - amount Re-bind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

(Demo)
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The Effect of Nonlocal Statements

nonlocal <name>

Effect: Future assignments to that name change its pre-existing binding in the

. first non-local frame of the current environment in which that name is bound.

Python Docs: an
"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in
an enclosing scope.

http://www.python.org/dev/peps/pep—-3104/
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The Many Meanings of Assignment Statements

X =2

Status Effect
*No nonlocal statement Create a new binding from name "x" to object 2 in
o'x" is not bound locally the first frame of the current environment
*No nonlocal statement Re-bind name "x" to object 2 in the first frame
*''x" is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of
o'x" is bound in a non-local the current environment in which "x" is bound

frame

enonlocal x
o'"x" is not bound in a non-
local frame

SyntaxError: no binding for nonlocal 'x' found

enonlocal x

*'x" is bound in a SyntaxError: name 'x' is parameter and nonlocal
non-local frame

o"x" also bound locally
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Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'
balance = balance - amount
return balance
return withdraw

wd
wd (5)

make_withdraw(20)
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Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

_balance = balance - amount
return balance 1: Local assignment J

return withdraw

wd
wd (5)

make_withdraw(20)

UnboundLocalError: local variable 'balance’' referenced before assignment

Interactive Diagram
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Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

def make_withdraw_list(balance):

b = [balance]

def withdraw(amount):
if amount > b[0O]:

return 'Insufficient funds'

b[O0] = b[@] - amount
return b[0]

return withdraw

withdraw = make_withdraw_1ist(100)
withdraw(25)




Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

def make_withdraw_list(balance):
b = [balance]

Name bound def withdraw(amount):
outside of . :
- thd def if amount > b[0]:
wl raw ae return 'Insufficient funds'

b[@] = b[O@] - amount
return b[0]
return withdraw

withdraw = make_withdraw_1ist(100)
withdraw(25)
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Mutable values can be changed without a nonlocal statement

\changes a list

def make_withdraw_list(balance):

ST - - [balance]
outside of def v.nthdraw(amount):
. if amount > b[0O]:
\Wlthdraw def ) return 'Insufficient funds'
———b[0] = b[O] - amount
Elgment return b[0]
assignment return withdraw

J
withdraw = make_withdraw_1ist(100)

withdraw(25)
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Mutable values can be changed without a nonlocal statement.

Global frame

fl:

2L

func make_withdraw_list(balance) [parent=Global]

make_withdraw_list » list

withdraw ‘ 0
\ 75

make_withdraw_list [parent=Global] \\\
func withdraw(amount) [parent=fl]

balance (100
withdraw | def make_withdraw_list(balance):
b [ Name bound [~ P = [balance]
Return | outside of def withdraw(amount):
value withdraw def i amouns = GOl =
’ N Y, return 'Insufficient funds'
———>b[0] = b[0] - amount
withdraw [parent=f1] Elﬁment return b[0]
mount |25 assignment return withdraw
ameount | \Fhanges a llsﬁj
Re“f“ 75 Withdraw = make_withdraw_list(100)
value

withdraw(25)
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Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance) [parent=Global]

make_withdraw_list » list

withdraw ‘ 0
\ 75

fl: make_withdraw_list [parent=Global] \
s Sbalance 100 func withdraw(amount) [parent=fl]
Name-value binding withdraw def make_withdraw_list(balance):
cannot change b ( Name bound = = [balance]
because there is no » tsid £ def withdraw(amount):
nonlocal statement return outside 0 if amount > b[0]:
value | withdraw def , . ,
L ) \_ _J return 'Insufficient funds
e ——Db[0] = b[O] - amount
f2: withdraw [parent=f1] Element return b[0]
assignment return withdraw
amount |25 changes a list
Return |5¢ - “Withdraw = make_withdraw_1ist(100)
value | withdraw(25)

Interactive Diagram



Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame

make_withdraw_list |

fl:

Name-value binding
cannot change
because there is no
nonlocal statement

(. J

f2: withdraw [parent=f1l]

make_withdraw_list [parent=Global]

func make_withdraw_list(balance) [parent=Global]

Mutable value

can change

withdraw ‘ 0
a\\\\\\\ ; s

................

\func withdraw(amount) [parent=fl]

leO
withdraw | def make_withdraw_list(balance):
b ( Name bound [~ P = [batance]
Return | outside of def withdraw(amount):
value withdraw def i amoung > BiSjs "
’ N Y, return 'Insufficient funds'
1 ———>b[0] = b[O] - amount
E _ement return b[0]
mount |25 assignment return withdraw
ameount | \Fhanges a llsﬁj
Renm |75 withdraw = make_withdraw_list(100)
vale | withdraw(25)

Interactive Diagram
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