61A Lecture 18



Announcements



Sequences



The Sequence Abstraction



The Sequence Abstraction

red, orange, , green, blue, indigo, violet.



The Sequence Abstraction

red, , , green, blue, indigo, violet.

There isn't just one sequence class or data abstraction (in Python or in general).



The Sequence Abstraction

red, , , green, blue, indigo, violet.

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:



The Sequence Abstraction

red, , , green, blue, indigo, violet.

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.



The Sequence Abstraction

red, , , green, blue, indigo, violet.

o, , 3, 4, 5 ., 6

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.



The Sequence Abstraction

red, , , green, blue, indigo, violet.

o, , 3, 4, 5 ., 6

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.

There is built-in syntax associated with this behavior, or we can use functions.



The Sequence Abstraction

red, , , green, blue, indigo, violet.

o, , 3, 4, 5 ., 6

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.

There is built-in syntax associated with this behavior, or we can use functions.

A list is a kind of built-in sequence



Linked Lists



Linked List Structure

A linked list is either empty or a first value and the rest of the linked list



Linked List Structure

A linked list is either empty or a first value and the rest of the linked list



Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance

first: 3

rest: .—/




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance

first: 3 first: 4

rest: .—/ rest: .—/




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance

first: 3 first: 4 first: 5

rest: .—/ rest: .—/ rest: .—/




Linked List Structure

Link instance

first:

3

Link instance

rest:

first:

4

Link instance

o=

rest:

first:

5

A linked list is either empty or a first value and the rest of the linked list

Link.empty

o—

rest:

o=




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked 1list

is a pair

|

first:

i Link instance

Link instance

first:

4

Link instance

rest:

first:

5

Link.empty

o—

rest:

o=




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list
is a pair

The first (zeroth)
element 1is an
attribute value

Link instance

first:

4

Link instance

rest:

first:

5

Link.empty

o—

rest:

o=




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list]

is a pair 3,4,5
" Link instance | [ Link instance = Link instance | Link.empty
first: 3 | | first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
P —— e S
. Link instance : ¢ Link instance Link instance i Link.empty:
| first: 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
P —— e S
. Link instance : ¢ Link instance Link instance i Link.empty:
| first: 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list

Link(3, Link(4, Link(5, Link.empty)))




Linked List Structure

Link instance

first:

3

Link instance

rest:

first:

4

Link instance

o—

rest:

first:

5

A linked list is either empty or a first value and the rest of the linked list

Link.empty

o—

rest:

[ —

Link(3, Link(4, Link(5, Link.empty)))




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance Link.empty

first: 3 first: 4 first: 5

rest: o—/ rest: o—/ rest: o—/

Link(3, Link(4, Link(5, Link.empty)))



Linked List Structure

Link instance Link instance Link instance Link.empty
4 5

Link(3, Link(4, Link(5, Link.empty)))

3

—L "




Linked List Structure

3,4,5
Link instance Link instance Link instance Link.empty
3 4 5

Link(3, Link(4, Link(5, Link.empty)))



Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5, Link.empty)))



Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5 )))



Linked List Class

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty):

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:
empty = ()

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

empty =i()

e ‘<[ Some zero-length sequence ]

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

empty =i()

e ‘<[ Some zero-length sequence ]

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.
Link(3, Link(4, Link(5 )))

(Demo)



Sequence Operations



Linked List Class

More special method names:
__getitem__ Element selection []

len__ Built-in len function




Linked List Class

Linked lists are sequences

More special method names:
__getitem__ Element selection []

len__ Built-in len function




Linked List Class

Linked lists are sequences

class Link: More special method names:
empty = () __getitem__ Element selection []
def __init__ (self, first, rest=empty): __len__ Built-in 1len function

self.first = first
self.rest = rest



Linked List Class

Linked lists are sequences

class Link: More special method names:
empty = () __getitem__ Element selection []
def __init__ (self, first, rest=empty): __len__ Built-in len function

self.first = first
self.rest = rest

def __getitem__(self, i):
if 1 == 0:
return self.first
else:
return self.rest[i-1]



Linked List Class

Linked lists are sequences

class Link: More special method names:
empty = () __getitem__ Element selection []
def __init__ (self, first, rest=empty): __len__ Built-in len function

self.first = first
self.rest = rest

def __getitem__(self, i):
if i == 0:
return self.first <[

else:

selection syntax

This element J




Linked List Class

Linked lists are sequences

class Link: More special method names:
empty = () __getitem__ Element selection []
def __init_ (self, first, rest=empty): __len__ Built-in len function

self.first = first
self.rest = rest

R : J/Calls this method]
defi__getitem__{self, 1i): AN

else:

return self.first <[

selection syntax

This element J




Linked List Class

Linked lists are sequences

class Link: More special method names:
empty = () __getitem__ Element selection []
def __init_ (self, first, rest=empty): __len__ Built-in len function

self.first = first
self.rest = rest

R : J(Calls this method]
defi__getitem__{self, 1i): AN

else:

return self.first J:

selection syntax

This element J

def __len__ (self):
return 1 + len(self.rest)



Linked List Class

Linked lists are sequences

class Link:
empty = ()
def __init__ (self, first, rest=empty):

self.first = first

More special method names:

__getitem__

len__

Element selection []

Built—-in len function

self.rest = rest

def{__getitem__ {self, 1i): N

J(Calls this method]

else:

return self.first J:

This element
selection syntax

def —1en—(se1‘f): --------------------------- { Recursive Ca'l_'l_

to __len__

|




Linked List Class

Linked lists are sequences

class Link: More special method names:
empty = () __getitem__ Element selection []
def __init_ (self, first, rest=empty): __len__ Built-in len function

self.first = first
self.rest = rest

R : J(Calls this method]
defi__getitem__{self, 1i): AN

else:

return self.first J:

selection syntax

This element J

Methods can be
def _ len_ (self): . <{ Recursive call J recursive too!

to __len__

(Demo)




Property Methods



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))
>>> s,second
4



Property Methods

Often, we want the value of instance attributes to stay in sync
For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))
>>> s,second
4

>>> s,second = 6



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>>
>>>

4

>>> s,second = 6
>>> s,second

wn

= Link(3, Link(4, Link(5)))
. second

0p]

wn



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))
>>> s,second

4

>>> s.second = 6

>>> §,second

6

>>> g

Link(3, Link(6, Link(5)))



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))
>>> s.second

4
>>>/s.second = 6 :

>>>is,second i ] No method
6 T <<[ calls! J
>>> g

Link(3, Link(6, Link(5)))



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))
>>> s.second

4

>>>/s.second = 6 :

>>>is,second i ] No method
6 T <<[ calls! J
>>> g

Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))
>>> s,second

4

>>>/s.second = 6 :

>>>is,second i ] No method
o e <<[ calls! J
>>> S

Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

A @E<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.



Property Methods

Often, we want the value of instance attributes to stay in sync

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

>>> s = Link(3, Link(4, Link(5)))
>>> s,second

4

>>>/s.second = 6 :

>>>is,second i ] No method
o e <<[ calls! J
>>> S

Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

A @E<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

(Demo)



Linked List Processing

[<map exp> for <name> in <iter exp> if <filter exp>]

(Demo)



