
61A Lecture 18

Announcements

Sequences

The Sequence Abstraction

4

The Sequence Abstraction

red, orange, yellow, green, blue, indigo, violet.

4

The Sequence Abstraction

There isn't just one sequence class or data abstraction (in Python or in general).

red, orange, yellow, green, blue, indigo, violet.

4

The Sequence Abstraction

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

4

The Sequence Abstraction

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.

4

The Sequence Abstraction

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

4

The Sequence Abstraction

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

There is built-in syntax associated with this behavior, or we can use functions.

4

The Sequence Abstraction

There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

There is built-in syntax associated with this behavior, or we can use functions.

A list is a kind of built-in sequence

4

Linked Lists

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

first: 3

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

The first (zeroth)
element is an

attribute value

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

A class attribute represents
an empty linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

6

3 , 4 , 5

Link.empty

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Link(3, Link(4, Link(5, Link.empty)))

A linked list
is a pair

The first (zeroth)
element is an

attribute value

The rest of the
elements are stored
in a linked list

A class attribute represents
an empty linked list

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

7

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

7

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

7

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

7

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance Link.empty

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

7

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

 , Link.empty)Link(3, Link(4, Link(5)))

Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

7

3 , 4 , 5

first: 3

rest:

Link instance

first: 4

rest:

Link instance

first: 5

rest:

Link instance

Link(3, Link(4, Link(5)))

Linked List Class

8

Link(3, Link(4, Link(5)))

Linked List Class

8

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

8

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

8

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

8

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

8

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Linked List Class

 class Link:

8

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

Linked List Class

 class Link:

8

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Linked List Class

 class Link:

 empty = ()

8

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Linked List Class

 class Link:

 empty = ()

8

Some zero-length sequence

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Linked List Class

 class Link:

 empty = ()

8

Some zero-length sequence

Linked list class: attributes are passed to __init__

 def __init__(self, first, rest=empty):
 assert rest is Link.empty or isinstance(rest, Link)
 self.first = first
 self.rest = rest

(Demo)

Link(3, Link(4, Link(5)))

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Sequence Operations

Linked List Class

10

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked List Class

10

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

Linked List Class

 class Link:

 empty = ()

10

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

 def __init__(self, first, rest=empty):
 assert ...
 self.first = first
 self.rest = rest

Linked List Class

 class Link:

 empty = ()

10

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

 def __init__(self, first, rest=empty):
 assert ...
 self.first = first
 self.rest = rest

 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]

Linked List Class

 class Link:

 empty = ()

10

This element
selection syntax

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

 def __init__(self, first, rest=empty):
 assert ...
 self.first = first
 self.rest = rest

 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]

Linked List Class

 class Link:

 empty = ()

10

This element
selection syntax

Calls this method

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

 def __init__(self, first, rest=empty):
 assert ...
 self.first = first
 self.rest = rest

 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]

Linked List Class

 class Link:

 empty = ()

10

This element
selection syntax

Calls this method

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

 def __init__(self, first, rest=empty):
 assert ...
 self.first = first
 self.rest = rest

 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]

 def __len__(self):
 return 1 + len(self.rest)

Linked List Class

 class Link:

 empty = ()

Recursive call
to __len__

10

This element
selection syntax

Calls this method

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

 def __init__(self, first, rest=empty):
 assert ...
 self.first = first
 self.rest = rest

 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]

 def __len__(self):
 return 1 + len(self.rest)

Linked List Class

 class Link:

 empty = ()

Recursive call
to __len__

10

(Demo)

Methods can be
recursive too!

This element
selection syntax

Calls this method

More special method names:

__len__

__getitem__ Element selection []

Built-in len function

Linked lists are sequences

 def __init__(self, first, rest=empty):
 assert ...
 self.first = first
 self.rest = rest

 def __getitem__(self, i):
 if i == 0:
 return self.first
 else:
 return self.rest[i-1]

 def __len__(self):
 return 1 + len(self.rest)

Property Methods

Property Methods

Often, we want the value of instance attributes to stay in sync

12

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))

12

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4

12

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6

12

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6

12

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

12

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

12

No method
calls!

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

12

No method
calls!

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

A @<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

12

No method
calls!

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Property Methods

Often, we want the value of instance attributes to stay in sync

>>> s = Link(3, Link(4, Link(5)))
>>> s.second
4
>>> s.second = 6
>>> s.second
6
>>> s
Link(3, Link(6, Link(5)))

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance

(Demo)

A @<attribute>.setter decorator on a method designates that it will be called whenever
that attribute is assigned. <attribute> must be an existing property method.

12

No method
calls!

For example, what if we wanted a Ratio to keep its proportion when its numerator changes

Linked List Processing

(Demo)

[<map exp> for <name> in <iter exp> if <filter exp>]

