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There isn't just one sequence class or data abstraction (in Python or in general).

The sequence abstraction is a collection of behaviors:

Length. A sequence has a finite length.

Element selection. A sequence has an element corresponding to any non-negative
integer index less than its length, starting at 0.

There is built-in syntax associated with this behavior, or we can use functions.

A list is a kind of built-in sequence



Linked Lists



Linked List Structure

A linked list is either empty or a first value and the rest of the linked list



Linked List Structure

A linked list is either empty or a first value and the rest of the linked list



Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance

first: 3

rest: .—/




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance

first: 3 first: 4

rest: .—/ rest: .—/




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance

first: 3 first: 4 first: 5

rest: .—/ rest: .—/ rest: .—/




Linked List Structure

Link instance

first:

3

Link instance

rest:

first:

4

Link instance

o=

rest:

first:

5

A linked list is either empty or a first value and the rest of the linked list

Link.empty

o—

rest:

o=




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked 1list

is a pair

|

first:

i Link instance

Link instance

first:

4

Link instance

rest:

first:

5

Link.empty

o—

rest:

o=




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list
is a pair

The first (zeroth)
element 1is an
attribute value

Link instance

first:

4

Link instance

rest:

first:

5

Link.empty

o—

rest:

o=




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list]

is a pair 3,4,5
" Link instance | [ Link instance = Link instance | Link.empty
first: 3 | | first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
P —— e S
. Link instance : ¢ Link instance Link instance i Link.empty:
| first: 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

A linked list A class attribute represents
is a pair 3,4,5 an empty linked list
P —— e S
. Link instance : ¢ Link instance Link instance i Link.empty:
| first: 3 é ; first: 4 first: 5

The first (zeroth)
element 1is an
attribute value

The rest of the
elements are stored
in a linked list

Link(3, Link(4, Link(5, Link.empty)))




Linked List Structure

Link instance

first:

3

Link instance

rest:

first:

4

Link instance

o—

rest:

first:

5

A linked list is either empty or a first value and the rest of the linked list

Link.empty

o—

rest:

[ —

Link(3, Link(4, Link(5, Link.empty)))




Linked List Structure

A linked list is either empty or a first value and the rest of the linked list

Link instance Link instance Link instance Link.empty

first: 3 first: 4 first: 5

rest: o—/ rest: o—/ rest: o—/

Link(3, Link(4, Link(5, Link.empty)))



Linked List Structure

Link instance Link instance Link instance Link.empty
4 5

Link(3, Link(4, Link(5, Link.empty)))

3

—L "




Linked List Structure

3,4,5
Link instance Link instance Link instance Link.empty
3 4 5

Link(3, Link(4, Link(5, Link.empty)))



Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5, Link.empty)))



Linked List Structure

Link instance Link instance Link instance

3

—L "

4 5

"

Link(3, Link(4, Link(5 )))



Linked List Class

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty):

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init__ (self, first, rest=empty):
assert rest is Link.empty or isinstance(rest, Link)
self.first = first
self.rest = rest

Link(3, Link(4, Link(5

)))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:
empty = ()

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

empty =i()

e ‘<[ Some zero-length sequence ]

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.

Link(3, Link(4, Link(5 )))



Linked List Class

Linked list class: attributes are passed to __init__

class Link:

empty =i()

e ‘<[ Some zero-length sequence ]

def __init_ (self, first, rest=empty)i .
assert rest is Link. empty or 151nstance(rest Llnk)
self.first = first o
self.rest = rest J

Returns whether
rest is a Link

help(isinstance): Return whether an object is an instance of a class or of a subclass thereof.
Link(3, Link(4, Link(5 )))
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def __init_ (self, first, rest=empty): __len__ Built-in len function

self.first = first
self.rest = rest

R : J(Calls this method]
defi__getitem__{self, 1i): AN

else:

return self.first J:

selection syntax

This element J

Methods can be
def _ len_ (self): . <{ Recursive call J recursive too!

to __len__
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Linked List Processing

[<map exp> for <name> in <iter exp> if <filter exp>]

(Demo)



