
CS 61A Object Oriented Programming
Fall 2017 Discussion 5: October 4, 2017

1 Object Oriented Programming
In a previous lecture, you were introduced to the programming paradigm known

as Object-Oriented Programming (OOP). OOP allows us to treat data as objects -

like we do in real life.

For example, consider the class Student. Each of you as individuals are an instance

of this class. So, a student Angela would be an instance of the class Student.

Details that all CS 61A students have, such as name, year, and major, are called

instance attributes. Every student has these attributes, but their values differ

from student to student. An attribute that is shared among all instances of Student

is known as a class attribute. An example would be the instructors attribute;

the instructors for CS 61A, DeNero and Hilfinger, are the same for every student

in CS 61A.

All students are able to do homework, attend lecture, and go to office hours. When

functions belong to a specific object, they are said to be methods. In this case,

these actions would be bound methods of Student objects.

Here is a recap of what we discussed above:

• class: a template for creating objects

• instance: a single object created from a class

• instance attribute: a property of an object, specific to an instance

• class attribute: a property of an object, shared by all instances of a class

• method: an action (function) that all instances of a class may perform

2 Object Oriented Programming

Questions
1.1 Below we have defined the classes Instructor, Student, and TeachingAssistant,

implementing some of what was described above. Remember that we pass the self

argument implicitly to instance methods when using dot-notation.

class Instructor:

degree = "PhD (Magic)" # this is a class attribute

def __init__(self, name):

self.name = name # this is an instance attribute

def lecture(self, topic):

print("Today we're learning about " + topic)

dumbledore = Instructor("Dumbledore")

class Student:

instructor = dumbledore

def __init__(self, name, ta):

self.name = name

self.understanding = 0

ta.add_student(self)

def attend_lecture(self, topic):

Student.instructor.lecture(topic)

if Student.instructor == dumbledore:

print(Student.instructor.name + " is awesome!")

else:

print("I miss Dumbledore.")

self.understanding += 1

def visit_office_hours(self, staff):

staff.assist(self)

print("Thanks, " + staff.name)

class TeachingAssistant:

def __init__(self, name):

self.name = name

self.students = {}

def add_student(self, student):

self.students[student.name] = student

def assist(self, student):

student.understanding += 1

Object Oriented Programming 3

What will the following lines output?

>>> snape = TeachingAssistant("Snape")

>>> harry = Student("Harry", snape)

>>> harry.attend_lecture("potions")

>>> hermione = Student("Hermione", snape)

>>> hermione.attend_lecture("herbology")

>>> hermione.visit_office_hours(TeachingAssistant("Hagrid"))

>>> harry.understanding

>>> snape.students["Hermione"].understanding

>>> Student.instructor = Instructor("Umbridge")

>>> Student.attend_lecture(harry, "transfiguration")

Equivalent to harry.attend_lecture("transfiguration")

4 Object Oriented Programming

1.2 We now want to write three different classes, Mailman, Client, and Email to simulate

email. Fill in the definitions below to finish the implementation!

class Email:

"""Every email object has 3 instance attributes: the

message, the sender name, and the recipient name.

"""

def __init__(self, msg, sender_name, recipient_name):

class Mailman:

"""Each Mailman has an instance attribute clients, which

is a dictionary that associates client names with

client objects.

"""

def __init__(self):

self.clients = {}

def send(self, email):

"""Take an email and put it in the inbox of the client

it is addressed to.

"""

def register_client(self, client, client_name):

"""Takes a client object and client_name and adds it

to the clients instance attribute.

"""

Object Oriented Programming 5

class Client:

"""Every Client has instance attributes name (which is

used for addressing emails to the client), mailman

(which is used to send emails out to other clients), and

inbox (a list of all emails the client has received).

"""

def __init__(self, mailman, name):

self.inbox = []

def compose(self, msg, recipient_name):

"""Send an email with the given message msg to the

given recipient client.

"""

def receive(self, email):

"""Take an email and add it to the inbox of this

client.

"""

6 Object Oriented Programming

2 Inheritance
Let’s explore another tool: inheritance. Suppose we want the Dog and Cat classes.

class Dog(object):

def __init__(self, name, owner):

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says woof!")

class Cat(object):

def __init__(self, name, owner, lives=9):

self.name = name

self.owner = owner

self.lives = lives

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name + " says meow!")

Notice that there’s a lot of repeated code! This is where inheritance comes in. In

Python, a class can inherit the instance variables and methods of another class.

class Pet(object):

def __init__(self, name, owner):

self.is_alive = True # It's alive!!!

self.name = name

self.owner = owner

def eat(self, thing):

print(self.name + " ate a " + str(thing) + "!")

def talk(self):

print(self.name)

class Dog(Pet):

def __init__(self, name, owner):

Pet.__init__(self, name, owner)

def talk(self):

print(self.name + ' says woof!')

Inheritance often represents a hierarchical relationship between two or more classes

where one class is a more specific version of the other. For example, a dog is

a pet. By making Dog a subclass of Pet, we did not have to redefine self.name,

self.owner, or eat. However, since we want Dog to talk differently, we did redefine,

or override, the talk method.

Object Oriented Programming 7

Questions
2.1 Implement the Cat class by inheriting from the Pet class. Make sure to use super-

class methods wherever possible. In addition, add a lose life method to the Cat

class.

class Cat(Pet):

def __init__(self, name, owner, lives=9):

def talk(self):

"""A cat says meow! when asked to talk."""

def lose_life(self):

"""A cat can only lose a life if they have at

least one life. When lives reaches zero, 'is_alive'

becomes False.

"""

2.2 More cats! Fill in the methods for NoisyCat, which is just like a normal Cat.

However, NoisyCat talks a lot, printing twice whatever a Cat says.

class NoisyCat(Cat):

"""A Cat that repeats things twice."""

def __init__(self, name, owner, lives=9):

Is this method necessary? Why or why not?

def talk(self):

"""Repeat what a Cat says twice."""

8 Object Oriented Programming

2.3 (Summer 2013 Final) What would Python display?

class A:

def f(self):

return 2

def g(self, obj, x):

if x == 0:

return A.f(obj)

return obj.f() + self.g(self, x - 1)

class B(A):

def f(self):

return 4

>>> x, y = A(), B()

>>> x.f()

>>> B.f()

>>> x.g(x, 1)

>>> y.g(x, 2)

2.4 Implement the Yolo class so that the following interpreter session works as expected.

(Summer 2013 Final)

>>> x = Yolo(1)

>>> x.g(3)

4

>>> x.g(5)

6

>>> x.motto = 5

>>> x.g(5)

10

Object Oriented Programming 9

2.5 (Summer 2015 Final) The TAs are building a social networking website called

CS61A+. The TAs plan to represent the network in a class called Network that

supports the following method:

� add friend(user1, user2) adds user1 and user2 to each other’s friends lists.

If user1 or user2 are not in the Network, add them to the dictionary of friends.

Help the TAs implement these two methods to make their social networking website

popular!

class Network:

"""

>>> cs61a_plus = Network()

>>> cs61a_plus.add_friend('Robert', 'Jeffrey')

>>> cs61a_plus.friends['Robert']

['Jeffrey']

>>> cs61a_plus.friends['Jeffrey']

['Robert']

>>> cs61a_plus.add_friend('Jessica', 'Robert')

>>> cs61a_plus.friends['Robert']

['Jeffrey', 'Jessica']

"""

def __init__(self):

self.friends = {} # Maps users to a list of their friends

def add_friend(self, user1, user2):

if __:

if __:

10 Object Oriented Programming

CS61A+ turns out to be unpopular. To attract more users, the TAs want to

implement a feature that checks if two users have at most n degrees of separation.

Consider the following CS61A+ Network:

self.friends = {

'Robert': ['Jeffrey', 'Jessica'],

'Jeffrey': ['Robert', 'Jessica', 'Yulin'],

'Jessica': ['Robert', 'Jeffrey', 'Yulin'],

'Yulin': ['Jeffrey', 'Jessica'],

'Albert': []

}

� There is 1 degree of separation between Robert and Jeffrey, because they are

direct friends.

� There are 2 degrees of separation between Robert and Yulin (Robert→ Jessica

→ Yulin)

� The degree of separation between Albert and anyone else is undefined, since

Albert has no friends.

class Network:

Code from previous question

def degrees(self, user1, user2, n):

"""In these doctests, assume cs61a_plus is a Network with the

dictionary of friends described in the example.

>>> cs61a_plus.degrees('Robert', 'Yulin', 2) # Exactly 2 degrees

True

>>> cs61a_plus.degrees('Robert', 'Jessica', 2) # Less than 2 degrees

True

>>> cs61a_plus.degrees('Yulin', 'Robert', 1) # More than 1 degree

False

>>> cs61a_plus.degrees('Albert', 'Jessica', 10) # No friends!

False

"""

if ______________________________________:

return True

elif ____________________________________:

return False

for friend in _______________________________:

if ______________________________________:

return True

return ______________________________________

