1. (12 points) Class Hierarchy

For each row below, write the output displayed by the interactive Python interpreter when the expression is
evaluated. Expressions are evaluated in order, and expressions may affect later expressions.

Whenever the interpreter would report an error, write ERROR. You should include any lines displayed before
an error. Reminder: The interactive interpreter displays the repr string of the value of a successfully evaluated
expression, unless it is None. Assume that you have started Python 3 and executed the following:

class Worker:
greeting = ’Sir’

def

def

def

def

def

- init. (gelf)-:
self.elf = Worker
work (self):

return self.greeting +

-_repr__(self):

» I work?

return Bourgeoisie.greeting
class Bourgeoisie(Worker):
greeting = ’Peon’

work (self):

print (Worker.work (self))

return ’My job is to gather wealth’
class Proletariat(Worker):

greeting = ’Comrade’

work (self, other):

other.greeting = self .greeting + > * + other.greeting
other.work() # for revolution

return other

jack = Worker ()

john = Bourgeoisie()

jack.greeting = ’Maam’
Expression Interactive Output Expression Interactive Output
5%5 25
1/0 ERrRrROR

Worker () .work()

john.work() [10:]

jack

Proletariat() .work(john)

jack.work()

john.elf.work(john)

Foll 2004 -

00F i’}%ﬁ%@ﬁﬁ%

4. (8 points) Tree Time

(a) (4 pt) A GrootTree g is a binary tree that has an attribute parent. Its parent is the GrootTree in which
g is a branch. If a GrootTree instance is not a branch of any other GrootTree instance, then its parent is
BinaryTree.empty.

BinaryTree.empty should not have a parent attribute. Assume that every GrootTree instance is a branch
of at most one other GrootTree instance and not a branch of any other kind of tree.

Fill in the blanks below so that the parent attribute is set correctly. You may not need to use all of the lines.
Indentation is allowed. You should not include any assert statements. Using your solution, the doctests for
fib_groot should pass. The BinaryTree class appears on your study guide.

Hint: A picture of fib_groot (3) appears on the next page.

class GrootTree(BinaryTree):
"""A binary tree with a parent."""

def __init__(self, entry, left=BinaryTree.empty, right=BinaryTree.empty):
BinaryTree.__init__(self, entry, left, right)

def fib_groot(n):
"""Return a Fibonacci GrootTree.

>>> t = fib_groot (3)
>>> t.entry

2

>>> t.parent.is_empty

True

>>> t.left.parent.entry

2

>>> t.right.left.parent.right.parent.entry

1

nun

if n == 0 or e
return GrootTree(n)

else:

left, right = fib_groot(n-2), fib_groot(n-1)
return GrootTree(left.entry + right.entry, left, right)

Fall 2014

(b) (4 pt) Fill in the blanks of the implementation of paths, a function that takes two arguments: a GrootTree
instance g and a list s. It returns the number of paths through g whose entries are the elements of s. A
path through a GrootTree can extend either to a branch or its parent.

You may assume that the GrootTree class is implemented correctly and that the list s is non-empty.

The two paths that have entries [2, 1, 2, 1, 0] in fib_groot(3) are shown below (left). The one path
that has entries [2, 1, 0, 1, 0] is shown below (right).

Two paths for [2, 1, 2, 1, 0] One path for [2, 1, @, 1, 0]

-

def paths(g, s):
"""The number of paths through g with entries s.

>>> t = fib_groot (3)

2>> paths(t, [1})

0

>>> paths(t, [2])

1

a>> paths(t, [2..1..-2. T.-0])
2

>>> paths(t, [2, 1, 0, 1, 01)
1

232 paths(t, [2, 15 2. 49 133
8

nun

if g is BinaryTree.empty

return 0

else:

EXAM PREP HANDOUT 6: EXAM PREPARATION SECTION 6 Page 2
2. Interpretation (Fa1l4 Mock Final Q5e)
def g(n):
if n $ 2 == 0 and g(n + 1) == 0:
return 0
return 5

Circle the correct order of growth for a call to g (n):
o(1) O(logn) O(n) 0(n?) e(n?) (")
3. Not with a fizzle, but with a bang (Su13 Midterm 2 Q2b) Consider the following linked

list functions:
def boom(n) :

1€ n == 0:
return "BOOM!"
return boom(n - 1)

def explode(n):
if n =—
return boom(n)
i=0
while i < n:
boom (n)
i+4+=1
return boom(n)

Circle the correct order of growth for a call to explode (n):

o(1) O(logn) O(n) O(n?) e(n?) o(2")

4. Not with a fizzle, but with a bang (Sul3 Midterm 2 Q2¢) Consider the following linked
list functions:
def dreams (n) :
if n<= 0;
return n
iafn > 0
return n + dreams(n // 2)

Circle the correct order of growth for a call to dreams (n):

e(1) O(logn) e(n) e(n?) 6(n?) e(2")

CS61A Exam Prep Spring 2018: Shea Conlon, Nipun Ramakrishnan and Tiffany Perumpail

EXAM PREP HANDOUT 6: EXAM PREPARATION SECTION 6 Page 3
5. Various Programs (Sp14 Final Q5¢) Give worst-case asymptotic bounds, in terms of m

and n, for the running time of the following functions.
def a(m, n):
for i in range(m):
for j in range(n // 100):

§W§h

pPrint ("hi")
Bound:
def b(m, n):
for i in range(m // 3):
print ("hi")

for j in range(n * 5):
print (bye")

Bound:

def d(m, n):
for i in range (m):
j=20
while j < i:
print ("hi")
Jo= G +- 100

Bound:

6. OOG Potpourri What is the order of growth of each of the following functions?
a. Weighted
def weighted_random_choice (lst) :
temp = []
for i in range(len(lst)):
temp.extend ([1lst[i]] * (1 + 1))
return random.choice (temp)

Order of Growth:

b. Iceskate
def ice(n):
skate = n
def rink(n):
nonlocal skate
print (n)
if skate > 0:
skate —= 1
rink (skate)
return skate
return rink(n//2)

Order of Growth:

CS61A Exam Prep Spring 2018: Shea Conlon, Nipun Ramakrishnan and Tiffany Perumpail

12

Summer 2015 <006

(d) (2 pt) Consider the following linked list functions:

def append(link, value):
"""Mutates link by adding value to the end of link."""
if link.rest is Link.empty:
link.rest = Link(value)
else:
append (link.rest, value)

def extend(linkl, 1link2):

"""Mutates linkl so that all elements of link2 are added to the end
of linkl.

numn

while 1ink2 is not Link.empty:
append (linkl, 1link2.first)
1link2 = link2.rest

Circle the order of growth that best describes the runtime of calling append, where n is the number of
elements in the input link.

o(1) O(logn) O(n) O(n?) o(2")

Assuming the two input linked lists to extend both contain n elements, circle the order of growth that best
describes the runtime of calling extend.

o(1) O(log n) O(n) O(n?) o)

6. (0 points) A second chance

In each of the two boxes below, write a positive integer. If one of the numbers you pick is the lowest unique
integer in the class, you get one extra credit point. In other words, you get two chances to write the smallest
positive integer that you think no one else will write.

(d) (6 pt) Implement double_up, which mutates a linked list by inserting elements so that each element is
adjacent to an equal element. The double_up function inserts as few elements as possible and returns the
number of insertions. The Link class appears on the midterm 2 study guide.

def double_up(s):
"""Mutate s by inserting elements so that each element is next to an equal.

>>> s = Link(3, Link(4))

>>> double_up(s) # Inserts 3 and 4

2

>>> s

Link (3, Link(3, Link(4, Link(4))))

>>> t = Link(3, Lipk{4, Link(4, Link(5))))
>>> double_up(t) # Inserts 3 and 5

2

22>t

Link (3, Link(3, Link(4, Link(4, Link(5, Link(5))))))
> u = Link(3, Link{4, Link(3))})

>>> double_up(u) # Inserts 3, 4, and 3

3

222> 1B

Link (3, Link(3, Link(4, Link(4, Link(3, Link(3))))))

nun

if s is Link.empty:

return 0

elif s.rest is Link.empty:

else:

