Writing Tail-Recursive Functions

Tail-recursive functions directly return the value of their recursive call. This
worksheet will present a way of writing and re-writing recursive functions so that
they are tail-recursive. Examples will be given in both Scheme and Python in order to
aid understanding, however you should keep in mind that only Scheme has
tail-recursion capabilities.

Difficulties in Writing Tail-Recursive Functions

In a tail-recursive function, we cannot modify the value of the recursive call before
returning it. We must return it directly.

(define (sum 1lst) E def sum(lst):
; Sums a list of numbers. ; ""vSums a list of numbers."""
(if (null? 1st) : if len(1lst) 0:
0 : return 0
(+ : return 1st[0] sum(lst[1:])
(car 1st) :
(sum (cdr 1st))
)
)
)

This function is not tail-recursive because after getting the value of the recursive call,
it adds the first element of the list to it.

(define (sum 1st) i def sum(lst):
(if if :
_____ : return ___
(sum _____) return sum(___)
)
)

This is what the function would look like if it were tail-recursive. But how to write it in
this format?

Pass-Up and Pass-Down Recursion

In order to see how to write sum in a tail-recursive way, we will take a detour to look
at two general styles of writing recursive functions, “pass-up” and “pass-down” style.
Pass-up style is often more natural and obvious, but it is pass-down style that
enables tail-recursion.

(define (sum 1lst)

; Sums a list of numbers.

(if (pull? 1st)

0
(+

(car 1st)

(sum (edr 1st))
)

v f return:

sum([1, 2, 3])

sumi[2, 3])

sum([3])

sum([])

* ? return:
‘ T return:
‘ f return:

1+5=6

2+3=5

3+0=3

i def sum(lst):
: """Sums a list of numbers.
if len(lst) == 0:
return 0
return 1st[0] + sum(lst[1:])

nnun

The version of sum we saw above was written in pass-up style. In pass-up recursion,

partial solutions flow up the recursive call chain, through the return values. No useful

computation occurs on the way down the recursive call chain. sum([1, 2, 3])
immediately calls sum([2, 31) without doing anything; sum([2, 31) then calls
sum([3]), and so on. The useful computation occurs as we return back up the
recursive call chain. sum([]) returns 0 to sum([3]). sum([3]) takes that ® and
returns3 + 0 = 3tosum([2, 3]).sum([2, 3]) takesthat 3 and so on.

(define (sum 1st sumsofar) i def sum(lst, sumsofar):

; Sums a list of numbers. """Sums a list of numbers."""
(if (pull? 1st) if len(lst) 0:
sumsofar E return sumsofar
(sum newsum = 1st[0] sumsofar
(cdr 1st) return sum(lst[1:], newsum)
(+ (car lst) sumsofar)
)
)
)
sumsofar: 0 * 1 return: 6
[sum([1, 2, 3], 0) J
sumsofar: 0+1=1 * 1 return: 6
sum([2, 3], 1)
sumsofar: 1+2=3 * f return: 6
sum([3], 3)
sumsofar: 3+3=6 * T return: b6
sum([), 6)

. -

This version of sum is written in pass-down style. In pass-down recursion, partial
solutions flow down the recursive call chain, through the arguments. All the useful
computation occurs on the way down the recursive call chain; the return values
simply pass the final answer all the way back up. sum([1, 2, 3], 0) does 1+0=1
and returns sum([2, 3], 1).sum([2, 3], 1) does2+1=3 and returns
sum([3]1, 3).

Pass-Down Recursion Enables Tail-Recursiveness

In pass-down recursion, the value of the recursive call is returned directly, which
makes it possible to write a tail-recursive function. The pass-down version of sum
above is tail-recursive.

Pass-Down Recursion May Require Adding an Argument

To write a recursive function in the pass-down style, you may need to add an
argument that represents the “result so far”. If writing a function that sums a list of

numbers, the “result so far” argument will represent the sum of the previous
numbers in the list. If writing a function that finds the maximum of a list of numbers,
the “result so far” argument will represent the maximum of the previous numbers in
the list.

Pass-Down Recursion May Require Using a Helper Function

Our added “result so far” argument is a bit annoying for people who actually use our
function; they always must pass an initial value for that additional argument. For
example, notice how when we rewrote sum in pass-down style, it had to be called as
(sum ‘(1 2 3) 0)instead of (sum ‘(1 2 3)).We can remove this annoying
additional argument using a helper function. We will add the additional argument to
the helper function instead of the original function. The original function’s job will
simply be to call the helper function.

(define (sum 1lst)
; Sums a list of numbers.
(define (helper 1st sumsofar)
(if (null? 1st)

sumsofar
(sum
(cdr 1st)
(+ (car 1lst) sumsofar)
)
)
)
(helper 1st 0)

)

def sum(1lst):

"""Sums a list of numbers.

def helper(lst, sumsofar):
if len(lst) 0:

return sumsofar

newsum = 1st[0] sumsofar
return sum(lst[1:], newsum)

return helper(lst, 0)

nnun

Practice Problems

Reverse List
Write a tail-recursive function that reverses 1st.

(define (reverse 1lst)
(define (f 1 r)
(if

Raise Number to Power
Write a tail-recursive function that raises b to the n-th power using multiplication.

(define (power b n)
(define (f p k)

(if ___
,
)
,
Hailstone

Write a tail-recursive function that finds the length of the hailstone sequence that
starts with n.

(define (hailstone n)
(define (f k 1)
(if

Solutions

Reverse List

(define (reverse 1lst)
(define (f 1 r)
(if (null? 1)
r
(f (cdr 1) (cons (car 1) r))

)
)
(f 1st nil)
)

Raise Number to Power

(define (power b n)
(define (f p k)

(if (= p 0)
k
) (f (- p 1) (x k b))
)
(f n1)
)
Hailstone

(define (hailstone n)
(define (f k 1)
(if (= k 1)
i
(if (= (modulo k 2) 0)
(f (/ k2) (+11))
(f (+ (» k3) 1) (+1i1))

(f n1)

