61A Lecture 6

Announcements

Recursive Functions

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself, either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)

Digit Sums

$2+0+1+6=9$

- If a number a is divisible by 9, then sum_digits(a) is also divisible by 9
-Useful for typo detection!

- Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits

The Problem Within the Problem

The sum of the digits of 6 is 6 .
Likewise for any one-digit (non-negative) number (i.e., < 10).
The sum of the digits of 2016 is

That is, we can break the problem of summing the digits of 2016 into a smaller instance of the same problem, plus some extra stuff.

We call this recursion

Sum Digits Without a While Statement

```
def split(n):
    """Split positive n into all but its last digit and its last digit.""""
    return n // 10, n % 10
def sum_digits(n):
    """'Return the sum of the digits of positive integer n.""""
    if n < 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


The Anatomy of a Recursive Function

- The def statement header is similar to other functions
- Conditional statements check for base cases
- Base cases are evaluated without recursive calls
- Recursive cases are evaluated with recursive calls

```
def sum_digits(n):
    """Return the sum of the digits of positive integer n."""
    if n< 10:
        return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last) + last
```


Recursion in Environment Diagrams

Recursion in Environment Diagrams

Iteration vs Recursion

Iteration is a special case of recursion

$$
4!=4 \cdot 3 \cdot 2 \cdot 1=24
$$

Using while:
def fact_iter(n):
total, $k=1,1$
while $\mathrm{k}<=\mathrm{n}$:
total, $k=$ total*k, $k+1$ return total

$$
n!=\prod_{k=1}^{n} k
$$

Math:

Names:
n, total, k, fact_iter

Using recursion:

```
def fact(n):
    if n == 0:
            return 1
        else:
            return n * fact(n-1)
```

$$
n!= \begin{cases}1 & \text { if } n=0 \\ n \cdot(n-1)! & \text { otherwise }\end{cases}
$$

n, fact

Verifying Recursive Functions

The Recursive Leap of Faith

```
def fact(n):
    if n == 0:
        return 1
    else:
        return n * fact(n-1)
```

Is fact implemented correctly?

1. Verify the base case
2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct
4. Verify that fact(n) is correct

Mutual Recursion

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

- First: From the rightmost digit, which is the check digit, moving left, double the value of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 * $2=14$) , then sum the digits of the products (e.g., 10: $1+0=1,14: 1+4=5$)
- Second: Take the sum of all the digits

The Luhn sum of a valid credit card number is a multiple of 10

Recursion and Iteration

Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.
Idea: Figure out what state must be maintained by the iterative function.

```
def sum_digits(n):
    """"Return the sum of the digits of positive integer n.""""
    if n < 10:
            return n
    else:
        all_but_last, last = split(n)
        return sum_digits(all_but_last:) + last
                            A partial sum
                What's left to sum
```


Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

```
def sum_digits_iter(n):
    digit_sum = 0
    while n > 0:
        n, last = split(n)
        digit_sum = digit_sum + last Updates via assignment become...
    return digit_sum
def sum_digits_rec(n, digit_sum):
    if n == 0: digit_sum return dig
    else:
        n, last = split(n)
        return sum_digits_rec(n, digit_sum + last)
```

