61A Lecture 6

Announcements

Recursive Functions

Recursive Functions

Definition: A function is called recursive if the body of that function calls itself
either directly or indirectly

Implication: Executing the body of a recursive function may require applying that function

Drawing Hands, by M. C. Escher (lithograph, 1948)

Digit Sums

2+0+1+6 = 9

+If a number a is divisible by 9, then sum_digits(a) is also divisible by 9

-Useful for typo detection!

The Bank of 61A

A checksum digit is a

PRV VAR LMLt function of all the other
digits; It can be

o T computed to detect typos

- Credit cards actually use the Luhn algorithm, which we'll implement after sum_digits

The Problem Within the Problem
The sum of the digits of 6 is 6.
Likewise for any one-digit (non-negative) number (i.e., < 10).

The sum of the digits of 2016 is

201 6
%

— AN

\
Sum of these digits + This digit

That is, we can break the problem of summing the digits of 2016 into a smaller instance of
the same problem, plus some extra stuff.

We call this recursion

Sum Digits Without a While Statement

def split(n):
"""Split positive n into all but its last digit and its last digit."""

return n // 10, n % 10

def sum_digits(n):
"""“Return the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)

return sun_digits(all_but_last) + last

The Anatomy of a Recursive Function

-The def statement header is similar to other functions
-Conditional statements check for base cases
-Base cases are evaluated without recursive calls
“Recursive cases are evaluated with recursive calls
def sum_digits(n):
"““Return the sum of the digits of positive integer n."""
if n < 10:
return n
else:
all_but_last, last = split(n)
return sum_digits(all_but_last) + last

(Demo)




Recursion in Environment Diagrams

Recursion in Environment Diagrams

(Demo)
def fact(n):
- if n == 0: Global frame
return 1 fact
else:

f1: fact [parent=Global
return n * fact(n-1) tp !

n 3

fact(3) f2: fact [parent=Global]

n 2

-The same function fact is called
multiple times

3: fact [parent=Global]
-Different frames keep track of the

different arguments in each call SRS
-What n evaluates to depends upon f4: fact [parent=Global]
the current environment B
n
-Each call to fact solves a simpler et |
problem than the last: smaller n value |1

I : :

func fact(n) [parent=Global]

Iteration vs Recursion

Iteration is a special case of recursion

4=4.3.2.1=2

Using while: Using recursion:
def fact_iter(n): def fact(n):
total, k =1, 1 if n == 0:
while k <= n: return 1
total, k = total*k, k+l else:
return total return n * fact(n-1)
i 1 ifn=0
Math: nl= k nl = ’
a 11 n-(n—1) otherwise

Names: n, total, k, fact_iter n, fact

Verifying Recursive Functions

The Recursive Leap of Faith

def fact(n):
if n ==

return n * fact(n-1)

Is fact implemented correctly?

1. Verify the base case

2. Treat fact as a functional abstraction!
3. Assume that fact(n-1) is correct

4. Verify that fact(n) is correct

Photo by Kevin Lee, Preikestolen, Norway

Mutual Recursion

The Luhn Algorithm

Used to verify credit card numbers
From Wikipedia: http://en.wikipedia.org/wiki/Luhn_algorithm

First: From the rightmost digit, which is the check digit, moving left, double the value
of every second digit; if product of this doubling operation is greater than 9 (e.g., 7 *
= 14), then sum the digits of the products (e.g., 10: 1 + @ =1, 14: 1 + 4 = 5)

« Second: Take the sum of all the digits

2 3 1+6=7 7 8 3 =30

The Luhn sum of a valid credit card number is a multiple of 10 (Demo)

Recursion and lteration




Converting Recursion to Iteration

Can be tricky: Iteration is a special case of recursion.

Idea: Figure out what state must be maintained by the iterative function.

def sun_digits(n):

"""Return the sum of the digits of positive integer n.
if n < 10:

return n
else:

all_but_last, last = split(n)

turn | igits(all_but_last Itﬁ
return isum_digits(all_but_last) + las i A partial sum
What's left to sum

(Demo)

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion.

Idea: The state of an iteration can be passed as arguments.

def sum_digits_iter(n):
digit_sum = 0
while n > 0:
n, last = split(n)
idigit_sum = digit_sum + last: | Updates via assignment become...
return digit_sum

def sum_digits_rec(n, digit_sumi
if n == 0: )
return digit_sum
else:
n, last = split(n)
return sum_digits_rec(n, digit_sum + last)

...arguments to a recursive call }




