61A Lecture 9 Announcements

Data Abstraction

*Compound values combine other values together

A date: a year, a month, and a day

sJauwed boad
v

A geographic position: latitude and longitude

<Data abstraction lets us manipulate compound values as units

Data Abstraction
-Isolate two parts of any program that uses data: =
g
How data are represented (as parts) 35
ERY]
3
How data are manipulated (as units) wl ~
@
-Data abstraction: A methodology by which functions enforce an
abstraction barrier between representation and use
Rational Numbers Rational Number Arithmetic
numerator
denominator 3 3 9
—_— * — = _—
2 5 10
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
3 3 21 nxkdy + nykdx
Assume we can compose and decompose rational numbers: _ 4+ — = — B —
2 5 10 dxkdy

fvrg:t'ioﬁ:al(ﬁ'. d’}‘? returns a rational number x
numer(x)’; returns the numerator of x
|
.

: Example General Form
idenom(x); returns the denominator of x

Rational Number Arithmetic Implementation

def mul_rational(x, y):
returnirational{numer(x) * numer(y),

idenom(x) * idenom{y))

def add_rational(x, y):
nx, dx = numer(x), denom(x) Pairs
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)

nxxdy + nyxdx
de —_—

°

print_rational(x): -
print(numer(x), '/', denom(x)) dxkdy

def rationals_are_equal(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

" erational(n, d) returns a rational number x : These functions implement an
| enumer(x) returns the numerator of x i abstract representation
| edenom(x) returns the denominator of x ; fioritacionalinumbers|

Representing Pairs Using Lists Representing Rational Numbers
>>> pair = [1, 2] A list literal:
1 * . . def rational(n, d):
TT ';‘7” Comma-separated expressions in brackets “"p representation of the rational number N/D."""
returnifn, d]
>>> X, y = pair “Unpacking" a list
55> X Construct a list
1
S>>y
2
def numer(x):
>>> pair[0] Element selection using the selection operator """Return the numerator of rational number X.""*
1 return x[0]
>>> pair[1]
2 def denom(x):
"""Return the denominator of rational number X."""
>>> from operator import getitem Element selection function return{x[1]
>>> getitem(pair, 0)
1 [Select item from a list]
>>> getitem(pair, 1)
2
(Demo)
More lists next lecture
A Problem of Specification Reducing to Lowest Terms
Our specification at the moment is ambiguous: Example:
“Numerator” refers to a particular way of writing a certain rational. 3 5 { 5] 2 1 [t
For example, what is the numerator of 6/8? — % =i — _— + — b
Could say it is 6, but 6/8 = 3/4, so why not 3? 2 3 2 5 10 2
<Let’s be more precise:
15 1/3 5 25 1/25 1
def numer(x): i — - - —
"""Return the numerﬁ&ﬁr of rational number X in lowest terms and having 6 1/3 2 50 1/25 2
the same sign as X.
def denom(x):
"""Return the denominator of rational number X in lowest terms and positive.””" from fractions 1mport{fgcd: Greatest common
def rational(n, d):
“""A representation of the rational number N/D."""
g = gcd(n, d) # Always has the sign of d
return [n//g, d//9]
(Demo)

Abstraction Barriers

Parts of the program that

Use rational numbers whole data values add_rational, mul_rational

to perform computation rationals_are_equal, print_rational
Abstraction Barriers
Create rationals or implement numerators and .
rational operations denominators rational, numer, denom

Inplement selectors and

constructor for rationals two-element lists list literals and element selection

Implementation of lists

Violating Abstraction Barriers

Does not use

constructors

add_rational([1, 21, [1, 4])

Data Representations
def divide_rational(x, y):
return [x[0] * y[1], x[1] * y[0] 1

And no constructor!

What is Data?

“We need to guarantee that constructor and selector functions work
together to specify the right behavior

- Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d

Data abstraction uses selectors and constructors to define behavior

*If behavior conditions are met, then the representation is valid

You can recognize an abstract data representation by its behavior

(Demo)

Rationals Implemented as Functions

i def rational(n, d):
def select(name):

if L This

1t name : i| function
return n represents

elif name == a rational
return d number

return select

Constructor is a
higher-order function

def numer(x):
returni x('n")|

Selector calls x

def denom(x):
return x('d")

Global frame > func

rational /

T e
numer
denom |« —>func

X[fune

rational [parent=Global]
nl3

dle

select

Retum

value

numer (parent=Global]
x

Return

select [parent=f1]

rational(n, d) [parent=Global]
numer (x) [parent=Global]
denom(x) [parent=Global]

select(name) [parent=f1]

::':: : x = rational(3, 8)
3
value numer(x)

