61A Lecture 9

Announcements

Data Abstraction

Data Abstraction

Data Abstraction

- Compound values combine other values together

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units
- Isolate two parts of any program that uses data:

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units
- Isolate two parts of any program that uses data:
"How data are represented (as parts)

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units
- Isolate two parts of any program that uses data:
-How data are represented (as parts)
-How data are manipulated (as units)

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units
- Isolate two parts of any program that uses data:
-How data are represented (as parts)
-How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units
- Isolate two parts of any program that uses data:
-How data are represented (as parts)
-How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Data Abstraction

- Compound values combine other values together
"A date: a year, a month, and a day
"A geographic position: latitude and longitude
- Data abstraction lets us manipulate compound values as units
- Isolate two parts of any program that uses data:
-How data are represented (as parts)
-How data are manipulated (as units)
- Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Rational Numbers

Rational Numbers

numerator
denominator

Rational Numbers

numerator
denominator

Exact representation of fractions

Rational Numbers

$$
\frac{\text { numerator }}{\text { denominator }}
$$

Exact representation of fractions
A pair of integers

Rational Numbers

```
                    numerator
                        denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
```


Rational Numbers

```
            numerator
                denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
Assume we can compose and decompose rational numbers:
```


Rational Numbers

```
            numerator
            denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
Assume we can compose and decompose rational numbers:
- rational(n, d) returns a rational number x
```


Rational Numbers

```
            numerator
            denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
Assume we can compose and decompose rational numbers:
- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
```


Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
Assume we can compose and decompose rational numbers:
- rational(n, d) returns a rational number \(x\)
- numer(x) returns the numerator of \(x\)
- denom(x) returns the denominator of \(x\)
```


Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
Assume we can compose and decompose rational numbers:
Constructor rational(n, d) returns a rational number x
    - numer(x) returns the numerator of x
    - denom(x) returns the denominator of x
```


Rational Numbers

```
    numerator
    denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation may be lost! (Demo)
Assume we can compose and decompose rational numbers:
```

```
Constructor rational(n, d) returns a rational number x
```

Constructor rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- numer(x) returns the numerator of x
Selectors
Selectors

- denom(x) returns the denominator of x

```
- denom(x) returns the denominator of x
```


Rational Number Arithmetic

Example

Rational Number Arithmetic

$$
\frac{3}{2} * \frac{3}{5}
$$

Rational Number Arithmetic

$$
\frac{3}{2} * \frac{3}{5}=\frac{9}{10}
$$

Rational Number Arithmetic

$$
\frac{3}{2} * \frac{3}{5}=\frac{9}{10}
$$

$$
\frac{n x}{d x} \quad * \quad \frac{n y}{d y}
$$

Rational Number Arithmetic

$$
\frac{3}{2} * \frac{3}{5}=\frac{9}{10}
$$

$$
\frac{n x}{d x} \quad * \frac{n y}{d y}=\frac{n x * n y}{d x * d y}
$$

Rational Number Arithmetic

$\frac{3}{2} * \frac{3}{5}=\frac{9}{10}$

$$
\frac{3}{2}+\frac{3}{5}
$$

Example

Rational Number Arithmetic

$$
\begin{aligned}
& \frac{3}{2} * \frac{3}{5}=\frac{9}{10} \\
& \frac{3}{2}+\frac{3}{5}=\frac{21}{10}
\end{aligned}
$$

Rational Number Arithmetic

$$
\begin{aligned}
& \frac{3}{2} * \frac{3}{5}=\frac{9}{10} \\
& \frac{3}{2}+\frac{3}{5}=\frac{21}{10}
\end{aligned}
$$

$$
\begin{array}{lll}
\frac{n x}{d x} & * & \frac{n y}{d y} \\
\frac{n x}{d x} & +\frac{n y}{d y}
\end{array}
$$

Rational Number Arithmetic

$$
\begin{aligned}
& \frac{3}{2} * \frac{3}{5}=\frac{9}{10} \\
& \frac{3}{2}+\frac{3}{5}=\frac{21}{10}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{n x}{d x} * \frac{n y}{d y}=\frac{n x * n y}{d x * d y} \\
& \frac{n x}{d x}+\frac{n y}{d y}=\frac{n x * d y+n y * d x}{d x * d y}
\end{aligned}
$$

Rational Number Arithmetic Implementation

$\frac{n x}{d x} \quad * \frac{n y}{d y}=\frac{n x * n y}{d x * d y}$

- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
    return rational(numer(x) * numer(y),
        denom(x) * denom(y))
```


$\frac{n x}{d x}+\frac{n y}{d y}=\frac{n x * d y+n y * d x}{d x * d y}$

- rational(n, d) returns a rational number x
- numer (x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

def mul_rational(x, y):
return rational(numer $(x) * \operatorname{numer}(y)$,
denom(x) * denom(y))
Constructor
$\frac{n x}{d x} \quad * \frac{n y}{d y}=\frac{n x * n y}{d x * d y}$
$\frac{n x}{d x}+\frac{n y}{d y}=\frac{n x * d y+n y * d x}{d x * d y}$

- rational(n, d) returns a rational number x
- numer(x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
```


$\frac{n x}{d x} \quad * \frac{n y}{d y}=\frac{n x * n y}{d x * d y}$
$\frac{n x}{d x}+\frac{n y}{d y}=\frac{n x * d y+n y * d x}{d x * d y}$

- rational(n, d) returns a rational number x
- numer (x) returns the numerator of x
- denom(x) returns the denominator of x

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
```


$\frac{n x}{d x} \quad * \frac{n y}{d y}=\frac{n x * n y}{d x * d y}$
$\frac{n x}{d x}+\frac{n y}{d y}=\frac{n x * d y+n y * d x}{d x * d y}$

- rational(n, d) returns a rational number x
- numer (x) returns the numerator of x
- denom(x) returns the denominator of x

These functions implement an
abstract representation
for rational numbers

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
    return rational(numer(x) * numer:(y),
```



```
def add_rational(x, y):
\(n x, d x=\) numer \((x)\), denom( \(x\) )
ny, dy = numer(y), denom(y) return rational( \(\mathrm{nx} * \mathrm{dy}+\mathrm{ny} * \mathrm{dx}, \mathrm{dx} * \mathrm{dy}\) )
```


- rational($n, d)$ returns a rational number x
- numer (x) returns the numerator of x
- denom(x) returns the denominator of x

These functions implement an
abstract representation for rational numbers

Rational Number Arithmetic Implementation

```
def mul_rational(x, y):
    return rationą(numer(x) * numer(y),
```



```
def add_rational(x, y):
\(n x, d x=\) numer \((x)\), denom( \(x\) )
ny, dy = numer(y), denom(y) return rational( \(n x * d y+n y * d x, d x * d y)\)
```

```
def print_rational(x):
```

def print_rational(x):
print(numer(x), '/', denom(x))

```
\(\frac{n x}{d x} * \frac{n y}{d y}=\frac{n x * n y}{d x * d y}\)

- rational(n, d) returns a rational number \(x\)
- numer \((x)\) returns the numerator of \(x\)
- denom(x) returns the denominator of \(x\)

These functions implement an
abstract representation for rational numbers

\section*{Rational Number Arithmetic Implementation}
def mul_rational(x, y):
    return rational numer \((x) *\) numer \((y)\),

\[
\frac{n x}{d x} * \frac{n y}{d y}=\frac{n x * n y}{d x * d y}
\]
def add_rational(x, y):
\(n x, d x=n u m e r(x)\), denom( \(x\) )
ny, dy = numer(y), denom(y) return rational( \(n x * d y+n y * d x, d x * d y)\)
def print_rational(x):
print(numer(x), '/', denom(x))
def rationals_are_equal( \(x, y\) ):
return numer \((\bar{x}) * \operatorname{denom}(y)==\operatorname{numer}(y) * \operatorname{denom}(x)\)
- rational(n, d) returns a rational number \(x\)
- numer \((x)\) returns the numerator of \(x\)
- denom(x) returns the denominator of \(x\)

These functions implement an
abstract representation
for rational numbers

Pairs

\section*{Representing Pairs Using Lists}

\section*{Representing Pairs Using Lists}
>>> pair \(=[1,2]\)

\section*{Representing Pairs Using Lists}
>>> pair \(=[1,2]\)
>>> pair
[1, 2]

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]

```

A list literal:
Comma-separated expressions in brackets

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair

```

A list literal:
Comma-separated expressions in brackets

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1

```

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1
>>> y
2

```

A list literal:
Comma-separated expressions in brackets

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1
>>> y
2

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1
>>> y
2
>>> pair[0]
1

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2

```

\section*{A list literal:}

Comma-separated expressions in brackets
"Unpacking" a list

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

Element selection using the selection operator

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>> X
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

Element selection using the selection operator

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

Element selection using the selection operator

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

Element selection using the selection operator

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>> X
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

Element selection using the selection operator

Element selection function

\section*{Representing Pairs Using Lists}
```

>>> pair = [1, 2]
>>> pair
[1, 2]
>>> x, y = pair
>>>
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

```

A list literal:
Comma-separated expressions in brackets
"Unpacking" a list

Element selection using the selection operator

Element selection function

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""'A representation of the rational number N/D."""
return [n, d]

```

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""A representation of the rational number N/D.""""
return [n, d]
Construct a list

```

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""A representation of the rational number N/D.""""
return [n, d]
Construct a list
def numer(x):
""""Return the numerator of rational number X.""""
return x[0]

```

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""A representation of the rational number N/D.""""
return [n, d]
Construct a list
def numer(x):
"""'Return the numerator of rational number X.""""
return x[0]
def denom(x):
""""Return the denominator of rational number X.""|"
return x[1]

```

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""A representation of the rational number N/D.""""
return [n, d]
Construct a list
def numer(x):
""""Return the numerator of rational number X.""""
return x[0]
def denom(x):
""""Return the denominator of rational number X.""""
return x[1]
Select item from a list

```

\section*{Representing Rational Numbers}
```

def rational(n, d):
"""A representation of the rational number N/D."""
return [n, d]
Construct a list
def numer(x):
""""Return the numerator of rational number X.""""
return x[0]
def denom(x):
""""Return the denominator of rational number X.""""
return x[1]
Select item from a list

```

\section*{A Problem of Specification}

Our specification at the moment is ambiguous:
""Numerator" refers to a particular way of writing a certain rational.
"For example, what is the numerator of 6/8?
"Could say it is 6 , but \(6 / 8=3 / 4\), so why not 3 ?
-Let's be more precise:

\section*{A Problem of Specification}

Our specification at the moment is ambiguous:
""Numerator" refers to a particular way of writing a certain rational.
"For example, what is the numerator of 6/8?
"Could say it is 6 , but \(6 / 8=3 / 4\), so why not 3 ?
-Let's be more precise:
```

def numer(x):
"""'Return the numerator of rational number X in lowest terms and having
the same sign as X."""

```

\section*{A Problem of Specification}

Our specification at the moment is ambiguous:
""Numerator" refers to a particular way of writing a certain rational.
"For example, what is the numerator of 6/8?
"Could say it is 6 , but \(6 / 8=3 / 4\), so why not 3 ?
-Let's be more precise:
def numer(x):
"""Return the numerator of rational number X in lowest terms and having the same sign as X."""
def denom(x):
"""Return the denominator of rational number X in lowest terms and positive."""

\section*{Reducing to Lowest Terms}

\section*{Example:}

\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\frac{3}{2} * \frac{5}{3}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\frac{3}{2} * \frac{5}{3}=\frac{5}{2}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\frac{3}{2} * \frac{5}{3}=\frac{5}{2}=\frac{15}{6} \quad * \frac{1 / 3}{1 / 3}=\frac{5}{2}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\begin{gathered}
\frac{3}{2} * \frac{5}{3}=\frac{5}{2}<\frac{2}{5}+\frac{1}{10} \\
\frac{15}{6} \quad * \frac{1 / 3}{1 / 3} \\
=\frac{5}{2}
\end{gathered}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\frac{3}{2} * \frac{5}{3}=\frac{5}{2}+\frac{2}{5}+\frac{1}{10}=\frac{1}{2}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}
\[
\begin{array}{r}
\frac{3}{2} * \frac{5}{3}=\frac{5}{2}+\frac{2}{5}+\frac{1}{10} \frac{1}{2} \\
\frac{15}{6} * \frac{1 / 3}{1 / 3} \\
\frac{25}{50} \quad * \frac{1 / 25}{1 / 25}
\end{array}
\]

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):
"""'A representation of the rational number N/D."""

\section*{Reducing to Lowest Terms}

\section*{Example:}

from fractions import gcd
def rational(n, d):
"""A representation of the rational number N/D.""""
\(g=\operatorname{gcd}(n, d) \quad \#\) Always has the sign of \(d\)

\section*{Reducing to Lowest Terms}

\section*{Example:}

```

from fractions import gcd
def rational(n, d):
"""'A representation of the rational number N/D.""""
g = gcd(n, d) \# Always has the sign of d
return [n//g, d//g]

```

\section*{Reducing to Lowest Terms}

\section*{Example:}

```

from fractions import gcd Greatest common divisor
def rational(n, d):
"""A representation of the rational number N/D.""""
g = gcd(n, d) \# Always has the sign of d
return [n//g, d//g]

```

\section*{Reducing to Lowest Terms}

\section*{Example:}

```

from fractions import gcd Greatest common divisor
def rational(n, d):
"""'A representation of the rational number N/D.""""
g = gcd(n, d) \# Always has the sign of d
return [n//g, d//g]

```

\section*{Abstraction Barriers}

\author{
Abstraction Barriers
}

\section*{Abstraction Barriers}
\(\square\)
Parts of the program that...

\section*{Abstraction Barriers}
\(\square\)

Use rational numbers
to perform computation

\section*{Abstraction Barriers}
\(\square\)

Use rational numbers whole data values
to perform computation

\section*{Abstraction Barriers}
\begin{tabular}{cc} 
Parts of the program that... & Treat rationals as... \\
\begin{tabular}{c} 
Use rational numbers \\
to perform computation
\end{tabular} & whole data values
\end{tabular} \begin{tabular}{c} 
add_rational, mul_rational \\
rationals_are_equal, print_rational
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{c|c} 
Parts of the program that... & Treat rationals as... \\
\begin{tabular}{c} 
Use rational numbers \\
to perform computation
\end{tabular} & whole data values
\end{tabular} \begin{tabular}{c} 
add_rational, mul_rational \\
rationals_are_equal, print_rational
\end{tabular}

Create rationals or implement rational operations

\section*{Abstraction Barriers}
\begin{tabular}{|c|c|} 
Parts of the program that... & Treat rationals as... \\
\begin{tabular}{c} 
Use rational numbers \\
to perform computation
\end{tabular} & whole data values \\
\begin{tabular}{c} 
Create rationals or implement \\
rational operations
\end{tabular} & \begin{tabular}{c} 
add_rational, mul_rational \\
rationals_are_equal, print_rational \\
numerators and \\
denominators
\end{tabular}
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{c|c|c} 
Parts of the program that... & Treat rationals as... & Using... \\
\begin{tabular}{c} 
Use rational numbers \\
to perform computation
\end{tabular} & whole data values & \begin{tabular}{c} 
add_rational, mul_rational \\
rationals_are_equal, print_rational
\end{tabular} \\
\begin{tabular}{c} 
Create rationals or implement \\
rational operations
\end{tabular} & \begin{tabular}{c} 
numerators and \\
denominators
\end{tabular} & rational, numer, denom
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{cc} 
Parts of the program that... & Treat rationals as...
\end{tabular} \begin{tabular}{c} 
Using... \\
\begin{tabular}{c} 
Use rational numbers \\
to perform computation
\end{tabular} \\
\begin{tabular}{c} 
numerators and \\
denominators
\end{tabular} \\
whole data values rational, mul_rational
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{|c|c|c|}
\hline Parts of the program that. & Treat rationals as. & Using. . . \\
\hline Use rational numbers to perform computation & whole data values & add_rational, mul_rational rationals_are_equal, print_rational \\
\hline Create rationals or implement rational operations & numerators and denominators & rational, numer, denom \\
\hline Implement selectors and constructor for rationals & & \\
\hline
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{c|cc|}
\hline Parts of the program that... & Treat rationals as... & Using... \\
\begin{tabular}{c} 
Use rational numbers \\
to perform computation
\end{tabular} & whole data values & rationals_are_equal, print_rational \\
Create rationals or implement \\
rational operations
\end{tabular}\(\quad\)\begin{tabular}{c} 
numerators and \\
denominators \\
Implement selectors and \\
constructor for rationals
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{|c|c|c|}
\hline Parts of the program that... & Treat rationals as. & Using. . . \\
\hline Use rational numbers to perform computation & whole data values & ```
    add_rational, mul_rational
rationals_are_equal, print_rational
``` \\
\hline Create rationals or implement rational operations & numerators and denominators & rational, numer, denom \\
\hline Implement selectors and constructor for rationals & two-element lists & list literals and element selection \\
\hline
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{|c|c|c|}
\hline Parts of the program that... & Treat rationals as. & Using . . \\
\hline Use rational numbers to perform computation & whole data values & add_rational, mul_rational rationals_are_equal, print_rational \\
\hline Create rationals or implement rational operations & numerators and denominators & rational, numer, denom \\
\hline Implement selectors and constructor for rationals & two-element lists & list literals and element selection \\
\hline
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{|c|c|c|}
\hline Parts of the program that... & Treat rationals as.. & Using . . \\
\hline Use rational numbers to perform computation & whole data values & add_rational, mul_rational rationals_are_equal, print_rational \\
\hline Create rationals or implement rational operations & numerators and denominators & rational, numer, denom \\
\hline Implement selectors and constructor for rationals & two-element lists & list literals and element selection \\
\hline \multicolumn{3}{|c|}{Implementation of lists} \\
\hline
\end{tabular}

\section*{Abstraction Barriers}
\begin{tabular}{|c|c|c|}
\hline Parts of the program that... & Treat rationals as. & Using. . . \\
\hline Use rational numbers to perform computation & whole data values & add_rational, mul_rational rationals_are_equal, print_rational \\
\hline Create rationals or implement rational operations & numerators and denominators & rational, numer, denom \\
\hline Implement selectors and constructor for rationals & two-element lists & list literals and element selection \\
\hline
\end{tabular}

\footnotetext{
Implementation of lists
}

\section*{Violating Abstraction Barriers}
\[
\begin{aligned}
& \text { add_rational(}[1,2],[1,4]) \\
& \text { def divide_rational }(x, y): \\
& \quad \text { return }[x[0] * y[1], x[1] * y[0]]
\end{aligned}
\]

\section*{Violating Abstraction Barriers}

> add_rational([1, 2], [1, 4])
> def divide_rational(x, y):
> return [x[0] * y[1], x[1] * y[0]]

\section*{Violating Abstraction Barriers}

\section*{Violating Abstraction Barriers}

\section*{Violating Abstraction Barriers}

\section*{Violating Abstraction Barriers}

Data Representations

\section*{What is Data?}

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior
- Behavior condition: If we construct rational number x from numerator n and denominator d , then numer(x)/denom(x) must equal \(n / d\)

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior
- Behavior condition: If we construct rational number x from numerator \(n\) and denominator \(d\), then numer(x)/denom(x) must equal \(n / d\)
- Data abstraction uses selectors and constructors to define behavior

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior
- Behavior condition: If we construct rational number x from numerator n and denominator d , then numer(x)/denom(x) must equal \(\mathrm{n} / \mathrm{d}\)
- Data abstraction uses selectors and constructors to define behavior
- If behavior conditions are met, then the representation is valid

\section*{What is Data?}
- We need to guarantee that constructor and selector functions work together to specify the right behavior
- Behavior condition: If we construct rational number x from numerator n and denominator d , then numer(x)/denom(x) must equal \(\mathrm{n} / \mathrm{d}\)
- Data abstraction uses selectors and constructors to define behavior
- If behavior conditions are met, then the representation is valid

You can recognize an abstract data representation by its behavior

\section*{What is Data?}
```

-We need to guarantee that constructor and selector functions work
together to specify the right behavior
-Behavior condition: If we construct rational number x from numerator
n and denominator d, then numer(x)/denom(x) must equal n/d
-Data abstraction uses selectors and constructors to define behavior
-If behavior conditions are met, then the representation is valid

```
You can recognize an abstract data representation by its behavior
(Demo)

\section*{Rationals Implemented as Functions}

\section*{Rationals Implemented as Functions}
```

def rational(n, d):
def select(name):
if name == 'n':
return n
elif name == 'd':
return d
return select

```
def numer(x):
 return x('n')
def denom(x):
 return x('d')

\section*{Rationals Implemented as Functions}
```

def rational(n, d):
def select(name):
if name == 'n':
return n
elif name == 'd':
return d
return select

```
```

def numer(x):
return x('n')

```
def denom(x):
 return x('d')

\section*{Rationals Implemented as Functions}
```

def rational(n, d):
def select(name):
if name == 'n':
return n
elif name == 'd':
return d
return select
Constructor is a
higher-order function
def numer(x):
return x('n')
def denom(x):
return x('d')

```

\section*{Rationals Implemented as Functions}

\section*{Rationals Implemented as Functions}

\section*{Rationals Implemented as Functions}
return select
```

def rational(n, d):
def rational(n, d):
def select(name):
def select(name):
if name == 'n':
if name == 'n':
return n
return n
elif name == 'd':
elif name == 'd':
return d
return d
return select
return select

This function represents
a rational number
Constructor is a higher-order function
def numer $(x)$ :
return $x\left({ }^{\prime} n^{\prime}\right)$
def denom(x):
Selector calls x


