61A Lecture 12

Announcements

Objects

(Demo)

Objects

* Objects represent information
e They consist of data and behavior, bundled together to create abstractions
* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
e Object-oriented programming:

* A metaphor for organizing large programs

* Special syntax that can improve the composition of programs
e In Python, every value is an object

* All objects have attributes

* A lot of data manipulation happens through object methods

* Functions do one thing; objects do many related things

Example: Strings

(Demo)

Representing Strings: the ASCII Standard

American Standard Code for Information Interchange

"Bell" (\a)

SCII Code Chart
7

0,1 8,9 Al/B,C D E F

o[NUL [SOH [STX [ETX [EOT ACKBEL| BS | HT [LF'| VT | FF [CR | 50 | ST
2| 1[bLE[DCT[DC2[De3 [Dca [NAK [SYN [ETB [CAN | EM [SUB[ESC| FS | GS | Rs | US
3|2 T e[# (s [s & [[* [+ -] -1/
m(3[e[1[2[3[a[5 6 789 :|:[<[=[>]¢
wld€[A[B[c[D|[E|[F|G|H|[T[IJ[K[L|MW]|[N]|O
Zls|PlQ[R[s[T]ufv w|[x[Y[z[O[N[T][~]-
“le ~lalb[cl[d|e|[flo[nh[i[i[k[1][m[n]o
Pl P lalr s t|u|v|w|[x]|y]|z]|<]|T]|¥]|-|oEL

16 columns: 4 bits
*Layout was chosen to support sorting by character code

*Rows indexed 2-5 are a useful 6-bit (64 element) subset
e Control characters were designed for transmission

(Demo)

Representing Strings: the Unicode Standard

+ 109,000 characters 7| R

* 93 scripts (organized) e

17 li:}
* Enumeration of character properties, ht "W
such as case

* Supports bidirectional display order

Jigk | 1

s

* A canonical name for every character

af | 7
*

U+0058 LATIN CAPITAL LETTER X

U+263a WHITE SMILING FACE

U+2639 WHITE FROWNING FACE

(Demo)

i | B

Mutation Operations

Some Objects Can Change

[Demo]
First example in the course of an object changing state
The same object can change in value throughout the course of computation

jessica
j I~ o
same_person | —>

Unicode
character
name

o

All names that refer to the same object are affected by a mutation

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> mystery(four)
>>> len(four)

>>> four = [1, 2, 3, 4]
>>> len(four)

>>> another_mystery() # No arguments!
>>> len(four)

def mystery(s): or def mystery(s):
s.pop() sf2:1 = 11
s.pop()

def another_mystery():
four.pop()
four.pop()

Only objects of mutable types can change: lists & dictionaries 2
{Demo}
Interactive Diagram
Tuples are Immutable Sequences
Immutable values are protected from mutation
>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]
>>> ooze() >>> ooze()
S Tt | Jiext Tectures ooze can) 27 Yhre
(1, 2, 3) change turtle's binding ['Anything could be inside!']
The value of an expression can change because of changes in names or objects
Tuples
>>> X =2 >>> x = [1, 2]
S>> X + X >>> X + X
4 : : 1, 2,1, 2]
Name change: e x = 3 Object mutation: >+ x.append(3)
>>> X + X >>> X X
6 1, 2, 3,1, 2, 3]
An immutable sequence may still change if it contains a mutable value as an element
>>>s = ([1, 21, 3) >>>s = ([1, 2], 3)
>>> s[0] = 4 >>> s[o][0] = 4
(Demo) ERROR s>
([4, 21, 3)
Sameness and Change
-As long as we never modify objects, a compound object is just the totality of its pieces
<A rational number is just its numerator and denominator
*This view is no longer valid in the presence of change
<A compound data object has an "identity" in addition to the pieces of which it is composed
<A list is still "the same" list even if we change its contents
Mutation - Conversely, we could have two lists that happen to have the same contents, but are different
>>> a = [10] >>> a = [10]
a >>> b = [10]
>>> a b
True
>>> a.append(20) >>> b.append(20)
>>> g == b >>> a
True [10]
>>> a >>> b
[10, 20 [10, 20]
>>> b >>> a ==
[10, 20] False
Identity Operators Mutable Default Arguments are Dangerous
Identity A default argument value is part of a function value, not generated by a call

<exp0> is <expl>

evaluates to True if both <exp@> and <expl> evaluate to the same object

Equality
<exp@> == <expl>

evaluates to True if both <exp®@> and <expl> evaluate to equal values

Identical obiects are always equal values

(Demo)

>>> def f(s=[1): Global frame /——)func f(s) [parent=Globall
s.append(3) f

list
)

return len(s) 1|2
0 f1: f [parent=Global] ‘ ‘3 3
1 s
o () Return ||
2 value Each time the function
>>> f() is called, s is bound
3 f2: f [parent=Global] to the same value!

s
Return |5

value
£3: f [parent=Global]

s

Return |5
value

I ive Di

