Mutable Functions

Announcements

Mutable Functions

A Function with Behavior That Varies Over Time
Let's model a bank account that has a balance of $100

»
Argument:
Return value: >>> withdraw(25) amount to withdraw
remaining balance 75

>>> withdraw(25) < Second withdrawal of
50 the same amount

Different
return value!

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15) Where's this balance
35 stored?

55> withdraw = make_withdraw(100) Within the parent frame A function has a body and
of the function! a parent environment

)

Persistent Local State Using Environments

Global frame func make_withdrau(balance) [parent=Globall
make_withdraw func withdraw(amount) [parent=f1]
withdraw

make_withdraw [parent=Global]

balance |50

thd

" Re:::: The parent frame contains the balance,
value the local state of the withdraw function

: withdraw [parent=f1]

All calls to the amount |25
5 Every call decreases the same balance
same function Return by (ibly diff) t
VG Hhe s e 175 y (a possibly different) amoun
parent
£3: withdraw [parent=f1]
amount 25
Return
value &

Reminder: Local Assignment

def percent_difference(x, y):
{“difference = abs(x-y) :
Tretlrn 160 * difference / x

diff = percent_difference(40, 50)

Assignment binds name(s) to
value(s) in the first frame of
the current environment

Global frame func percent_difference(x, y) [parent=Global]

percent_difference

1: percent_difference [parent=Global]
x 40
y 50

» difference |10

Execution rule for assignment statements:
1. Evaluate all expressions right of =, from left to right

2. Bind the names on the left to the resulting values in the current frame

Non-Local Assignment & Persistent Local State

def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""

def withdraw(amount):

Declare the name "balance" nonlocal at the top of
nonlocal balance the body of the function in which it is re-assigned

if amount > balance:

return 'Insufficient funds'

balance = balance - amount Re-bind balance in the first non-local

return balance frame in which it was bound previously

return withdraw

(Demo)

Non-Local Assignment

The Effect of Nonlocal Statements

nonlocal <name>, <name>,

Effect: Future assignments to that name change its pre-existing binding in the
first non-local frameof the current environment in which that name is bound.

Python Docs: an

"enclosing scope"

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing bindings in

an enclosing scope.

Names listed in a nonlocal statement must not collide with pre-existing

bindings in the {local scope.
[Current frame

bttp://d th 1 1.3/reference/sinple_stmts. htnl#th local

bttp: th 104,

The Many Meanings of Assignment Statements

Status Effect
nonlocal statement Create a new binding from name "x" to object 2 in
is not bound locally the first frame of the current environment
nonlocal statement Re-bind name " to object 2 in the first frame
is bound locally of the current environment
enonlocal x Re-bind "x" to 2 in the first non-local frame of

*"x" is bound in a non-local the current environment in which "x" is bound

frame

*nonlocal x
is not bound in a non-

local frame

SyntaxError: no binding for nonlocal 'x' found

*nonlocal x
«"x" is bound in a SyntaxError: name 'x' is parameter and nonlocal
non-local frame

*"x" also bound locally

Python Particulars

Python pre-computes which frame contains each name before executing the body of a function.

Within the body of a function, all instances of a name must refer to the same frame.

def make_withdraw(balance):
def withdraw(amount):
if amount > balance:
return 'Insufficient funds'

ibalance = balance - amount
return balance Local assignment

return withdraw

wd = make_withdraw(20)
wd (5)

UnboundLocalError: local variable 'balance' referenced before assignment

Mutable Values & Persistent Local State

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance) [parent=Global]

make_withdraw_list

withdraw | & ilo
75
f1: make_withdraw_list [parent=Global] \
baiance’il100 func withdraw(amount) [parent=f1]

Name-value binding withdraw
cannot change

def make_withdraw_list(balance):
b = [balance]
def withdraw(amount):

b
because there is no Name bound

Ret: outside of
nonlocal statement value WG e G if amount > b[e]:
return 'Insufficient funds'
b[e] = b[e] - amount
f2: withdraw [parent=f1] Element return b[e]
t 25 assignment return withdraw
L] changes a list
Ret\‘m 75 Withdraw = make_withdraw_1ist(100)
value

withdraw(25)

goo.gl/y4TyFZ

Multiple Mutable Functions

(Demo)

Referential Transparency, Lost

- Expressions are referentially transparent if substituting an expression with its value
does not change the meaning of a program.

mul(add(2, mul(4, 6)), add(3, 5))

mul(add(2, 24), add(3, 5))

! mul(2 , add(3, 5)) k
AN

*Mutation operations violate the condition of referential transparency because they do
more than just return a value; they change the environment.

Environment Diagrams

oski(abs)

Go Bears!

def oski(bear): Global frame
oski func oski(bear) [parent=6]
def cal(berk):

1: oski [parent=G] |~~~ func Allev) [parent=f2]
nonlocal bear bear 4/%(\%“ abs(...) [oarent=6]

—

if ibear (berk): == 0: cat func cal(berk) [parent=f1]
Return Value b B B

return [berk+l, berk-1]

2: cal [parent=
pe
P berk

Return Value

bear = lambda ley: berk-le

return [berk, ‘cal(berk)]

3: cal (parent=1]

return cal(2)
B berk | 2

Return Value |

fa: A [parent=f2]
ley | 2

Return Value | @

