
Growth Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:
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(Demo)

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

def fib(n): 
    if n = = 0: 
        return 0 
    elif n == 1: 
        return 1 
    else: 
        return fib(n - 2) + fib(n - 1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def  memo(f): 

    cache = {} 

    def  memoized (n): 

        if  n not in cache: 

            cache[n] = f(n) 

        return  cache[n] 

    return  memoized

Keys are arguments that 
map to return values

Same behavior as f,  
if f is a pure function
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(Demo)

Memoized Tree Recursion
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Call to fib

Found in cache
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The Consumption of Space

Which environment frames do we need to keep during evaluation? 

At any moment there is a set of active  environments 

Values and frames in active environments consume memory 

Memory that is used for other values and frames can be recycled
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Active environments:  

¥Environments for any function calls currently being evaluated 

¥Parent environments of functions named in active environments

(Demo)

Interactive Diagram

Fibonacci Space Consumption
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Assume we have 
reached this step
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Fibonacci Space Consumption
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Assume we have 
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Time

n

Comparing Implementations

Implementations of the same functional abstraction can require different resources
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Time (number of divisions)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n 
      For every k, n/k is also a factor!

def factors (n):

Greatest integer less than
p
n

Question: How many time does each implementation use division? (Demo)

Orders of Growth

R(n) = �(f(n))

k1 áf (n) ! R(n) ! k2 áf (n)

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem
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n:     size of the problem 

R(n):  m easurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for all n larger than some minimum m

Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of tim e
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Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n 
      For every k, n/k is also a factor!

def factors (n):
Time Space

�(n) �(1)

!(
!

n) �(1)

Assumption: 
integers occupy a 

fixed amount of 
space

(Demo)



Exponentiation

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size
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def  exp (b, n): 
    if  n == 0: 
        return  1 
    else : 
        return  b *  exp(b, n - 1)

def  square (x): 
    return  x * x 

def  exp_fast (b, n): 
    if  n == 0: 
        return  1 
    elif  n % 2 == 0: 
        return  square(exp_fast(b, n // 2)) 
    else : 
        return  b *  exp_fast(b, n - 1)

(Demo)

Exponentiation
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Time Space

�(n) �(n)

�(log n) �(log n)

Goal: one more multiplication lets us double the problem size

def  exp (b, n): 
    if  n == 0: 
        return  1 
    else : 
        return  b *  exp(b, n - 1)

def  square (x): 
    return  x * x 

def  exp_fast (b, n): 
    if  n == 0: 
        return  1 
    elif  n % 2 == 0: 
        return  square(exp_fast(b, n // 2)) 
    else : 
        return  b *  exp_fast(b, n - 1)

Comparing Orders of Growth

Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process
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Logarithms: The base of a logarithm does not affect the order of growth of a process

Nesting: When an inner process is repeated for each step in an outer process, multiply the 
steps in the outer and inner processes  to find the total number of steps

!( n) !(500 án) ⇥(
1

500
· n)

⇥(log2 n) !(log 10 n) !(ln n)

def  overlap (a, b): 
    count = 0 
    for  item in a: 
        if  item in b: 
            count += 1 
    return  count

Outer: length of a

Inner: length of b

If a and b are both length n, 
then overlap takes      steps!( n2)

Lower-order terms: The fastest-growing part of the computation dominates the total

!( n2 + n)!( n2) !( n2 + 500 án + log 2 n + 1000)

Comparing orders of growth (n is the problem size)
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!( bn )

�(n)

�(log n)

�(1)

!( n2)

Exponential growth.  Recursive fib  takes 

!( ! n ) ! =
1 +

!
5

2
" 1.61828steps, where 

Incrementing the problem scales R(n) by a factor

Linear growth.  E.g., slow factors  or exp

Logarithmic growth. E.g., exp_fast

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter

Quadratic growth.  E.g., overlap

Incrementing n increases R(n) by the problem size n

!(
!

n) Square root growth.  E.g., factors_fast


