
Growth Announcements

Measuring Efficiency

Recursive Computation of the Fibonacci Sequence

Our first example of tree recursion:

4

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

(Demo)

http://en.wikipedia.org/wiki/File:Fibonacci.jpg

def fib(n):
 if n = = 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fib(n - 2) + fib(n - 1)

Memoization

Memoization

Idea: Remember the results that have been computed before

def memo(f):

 cache = {}

 def memoized (n):

 if n not in cache:

 cache[n] = f(n)

 return cache[n]

 return memoized

Keys are arguments that
map to return values

Same behavior as f,  
if f is a pure function

6

(Demo)

Memoized Tree Recursion

7

Call to fib

Found in cache
fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Skipped

Space

The Consumption of Space

Which environment frames do we need to keep during evaluation?

At any moment there is a set of active environments

Values and frames in active environments consume memory

Memory that is used for other values and frames can be recycled

9

Active environments:

¥Environments for any function calls currently being evaluated

¥Parent environments of functions named in active environments

(Demo)

Interactive Diagram

Fibonacci Space Consumption

10

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Fibonacci Space Consumption

11

Assume we have
reached this step

fib(5)

fib(4)

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

fib(2)

fib(0) fib(1)

0 1

fib(3)

fib(1)

1

fib(2)

fib(0) fib(1)

0 1

Has an active environment

Can be reclaimed

Hasn't yet been created

Time

n

Comparing Implementations

Implementations of the same functional abstraction can require different resources

13

Time (number of divisions)

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n
 For every k, n/k is also a factor!

def factors (n):

Greatest integer less than
p
n

Question: How many time does each implementation use division? (Demo)

Orders of Growth

R(n) = �(f(n))

k1 áf (n) ! R(n) ! k2 áf (n)

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

15

n: size of the problem

R(n): m easurement of some resource used (time or space)

means that there are positive constants k1 and k2 such that

for all n larger than some minimum m

Order of Growth of Counting Factors

Implementations of the same functional abstraction can require different amounts of tim e

16

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer that evenly divides n

Slow: Test each k from 1 through n

Fast: Test each k from 1 to square root n
 For every k, n/k is also a factor!

def factors (n):
Time Space

�(n) �(1)

!(
!

n) �(1)

Assumption:
integers occupy a

fixed amount of
space

(Demo)

Exponentiation

bn =

�
1 if n = 0

b · bn�1 otherwise

bn =

�
��

��

1 if n = 0

(b
1
2 n)2 if n is even

b · bn�1 if n is odd

Exponentiation

Goal: one more multiplication lets us double the problem size

18

def exp (b, n):
 if n == 0:
 return 1
 else :
 return b * exp(b, n - 1)

def square (x):
 return x * x

def exp_fast (b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(exp_fast(b, n // 2))
 else :
 return b * exp_fast(b, n - 1)

(Demo)

Exponentiation

19

Time Space

�(n) �(n)

�(log n) �(log n)

Goal: one more multiplication lets us double the problem size

def exp (b, n):
 if n == 0:
 return 1
 else :
 return b * exp(b, n - 1)

def square (x):
 return x * x

def exp_fast (b, n):
 if n == 0:
 return 1
 elif n % 2 == 0:
 return square(exp_fast(b, n // 2))
 else :
 return b * exp_fast(b, n - 1)

Comparing Orders of Growth

Properties of Orders of Growth

Constants: Constant terms do not affect the order of growth of a process

21

Logarithms: The base of a logarithm does not affect the order of growth of a process

Nesting: When an inner process is repeated for each step in an outer process, multiply the
steps in the outer and inner processes to find the total number of steps

!(n) !(500 án) ⇥(
1

500
· n)

⇥(log2 n) !(log 10 n) !(ln n)

def overlap (a, b):
 count = 0
 for item in a:
 if item in b:
 count += 1
 return count

Outer: length of a

Inner: length of b

If a and b are both length n,
then overlap takes steps!(n2)

Lower-order terms: The fastest-growing part of the computation dominates the total

!(n2 + n)!(n2) !(n2 + 500 án + log 2 n + 1000)

Comparing orders of growth (n is the problem size)

22

!(bn)

�(n)

�(log n)

�(1)

!(n2)

Exponential growth. Recursive fib takes

!(! n) ! =
1 +

!
5

2
" 1.61828steps, where

Incrementing the problem scales R(n) by a factor

Linear growth. E.g., slow factors or exp

Logarithmic growth. E.g., exp_fast

Doubling the problem only increments R(n).

Constant. The problem size doesn't matter

Quadratic growth. E.g., overlap

Incrementing n increases R(n) by the problem size n

!(
!

n) Square root growth. E.g., factors_fast

