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Sometimes, computer programs behave in non-standard ways

• A function receives an argument value of an improper type

• Some resource (such as a file) is not available

• A network connection is lost in the middle of data transmission

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer
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Exceptions can be handled by the program, preventing the interpreter from halting

Unhandled exceptions will cause Python to halt execution and print a stack trace

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control

If f calls g and g calls h, exceptions can shift control from h to f without waiting for 
g to return.

(Exception handling tends to be slow.)

Mastering exceptions:
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