
61A Lecture 25

Announcements

Pairs Review

Pairs and Lists

4

Pairs and Lists

In the late 1950s, computer scientists used confusing names

4

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair

4

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair

4

(cons 1 2) 1 2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair

4

(cons 1 2) 1 2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair

4

(cons 1 2) 1 2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

4

(cons 1 2) 1 2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

4

(cons 1 2) 1 2

(cons 2 nil) 2 nil

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

4

(cons 1 2) 1 2

2

(cons 2 nil) 2 nil

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list

4

(cons 1 2) 1 2

2

(cons 2 nil) 2 nil

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list

4

(cons 1 2) 1 2

2

(cons 2 nil)

(cons 2 nil) 2 nil

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list

 >

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces

 >

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces

 >
 (1 2)

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)

Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x) Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1

Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)

Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2

Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))

Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))

Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

1 2 3 4

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

4

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

1 2 3 4

2

Pairs and Lists

In the late 1950s, computer scientists used confusing names
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list
• A (non-empty) list in Scheme is a pair in which the second element is nil or a Scheme list
• Important! Scheme lists are written in parentheses separated by spaces
• A dotted list has some value for the second element of the last pair that is not a list

 >
 (1 2)
 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

4(Demo)

(cons 1 2) 1 2

2

(cons 1)(cons 2 nil) 1

(cons 2 nil) 2 nil

1 2

1 2 3 4

2

Exceptions

Today's Topic: Handling Errors

6

Today's Topic: Handling Errors

Sometimes, computer programs behave in non-standard ways

6

Today's Topic: Handling Errors

Sometimes, computer programs behave in non-standard ways

• A function receives an argument value of an improper type

6

Today's Topic: Handling Errors

Sometimes, computer programs behave in non-standard ways

• A function receives an argument value of an improper type

• Some resource (such as a file) is not available

6

Today's Topic: Handling Errors

Sometimes, computer programs behave in non-standard ways

• A function receives an argument value of an improper type

• Some resource (such as a file) is not available

• A network connection is lost in the middle of data transmission

6

Today's Topic: Handling Errors

Sometimes, computer programs behave in non-standard ways

• A function receives an argument value of an improper type

• Some resource (such as a file) is not available

• A network connection is lost in the middle of data transmission

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer

6

Exceptions

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing the interpreter from halting

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing the interpreter from halting

Unhandled exceptions will cause Python to halt execution and print a stack trace

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing the interpreter from halting

Unhandled exceptions will cause Python to halt execution and print a stack trace

Mastering exceptions:

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing the interpreter from halting

Unhandled exceptions will cause Python to halt execution and print a stack trace

Exceptions are objects! They have classes with constructors.

Mastering exceptions:

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing the interpreter from halting

Unhandled exceptions will cause Python to halt execution and print a stack trace

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control

Mastering exceptions:

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing the interpreter from halting

Unhandled exceptions will cause Python to halt execution and print a stack trace

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control

If f calls g and g calls h, exceptions can shift control from h to f without waiting for
g to return.

Mastering exceptions:

7

Exceptions

A built-in mechanism in a programming language to declare and respond to exceptional
conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing the interpreter from halting

Unhandled exceptions will cause Python to halt execution and print a stack trace

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control

If f calls g and g calls h, exceptions can shift control from h to f without waiting for
g to return.

(Exception handling tends to be slow.)

Mastering exceptions:

7

Raising Exceptions

Assert Statements

Assert statements raise an exception of type AssertionError

9

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

9

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally. They can be ignored to increase efficiency
by running Python with the "-O" flag; "O" stands for optimized

9

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally. They can be ignored to increase efficiency
by running Python with the "-O" flag; "O" stands for optimized

python3 -O

9

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally. They can be ignored to increase efficiency
by running Python with the "-O" flag; "O" stands for optimized

python3 -O

Whether assertions are enabled is governed by a bool __debug__

9

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally. They can be ignored to increase efficiency
by running Python with the "-O" flag; "O" stands for optimized

python3 -O

Whether assertions are enabled is governed by a bool __debug__

9

(Demo)

Raise Statements

10

Raise Statements

Exceptions are raised with a raise statement

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

10

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

10

(Demo)

Try Statements

Try Statements

12

Try Statements

Try statements handle exceptions

12

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

12

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

12

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first

12

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first

If, during the course of executing the <try suite>,  
an exception is raised that is not handled otherwise, and

12

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first

If, during the course of executing the <try suite>,  
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

12

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first

If, during the course of executing the <try suite>,  
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception

12

Handling Exceptions

13

Handling Exceptions

Exception handling can prevent a program from terminating

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

Multiple try statements: Control jumps to the except suite of the most recent
try statement that handles that type of exception

13

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

Multiple try statements: Control jumps to the except suite of the most recent
try statement that handles that type of exception

13

(Demo)

WWPD: What Would Python Display?

How will the Python interpreter respond?

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

def invert(x):
 inverse = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return inverse

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

>>> invert_safe(1/0)

def invert(x):
 inverse = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return inverse

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:

def invert(x):
 inverse = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return inverse

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:
... invert_safe(0)

def invert(x):
 inverse = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return inverse

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:
... invert_safe(0)
... except ZeroDivisionError as e:

def invert(x):
 inverse = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return inverse

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:
... invert_safe(0)
... except ZeroDivisionError as e:
... print('Hello!')

def invert(x):
 inverse = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return inverse

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

14

WWPD: What Would Python Display?

How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:
... invert_safe(0)
... except ZeroDivisionError as e:
... print('Hello!')
>>> inverrrrt_safe(1/0)

def invert(x):
 inverse = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return inverse

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

14

Example: Reduce

Reducing a Sequence to a Value

16

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

f is ...
 a two-argument function

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

2

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow 2

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow 2 2

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow 2 2

4

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow 2 2

4

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow 2 2

4 3

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow 2 2

4 3

64

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

f is ...
 a two-argument function
s is ...
 a sequence of values that can be the second argument
initial is ...
 a value that can be the first argument

Reducing a Sequence to a Value

def reduce(f, s, initial):
 """Combine elements of s pairwise using f, starting with initial.

 E.g., reduce(mul, [2, 4, 8], 1) is equivalent to mul(mul(mul(1, 2), 4), 8).

 >>> reduce(mul, [2, 4, 8], 1)
 64
 """

16

reduce(pow, [1, 2, 3, 4], 2)

pow 2 1

pow

pow

pow

2 2

4 3

64 4

16,777,216

[

[

(Demo)

Sierpinski's Triangle

(Demo)

