Integer Examples (continued) | A۱ | ery In | terestin | g N | lum | ıber | | | | | | | | | | |-----|---------|----------|-----|-----|-------|------|----------|----|-----|------------|-----|-----------|-----------|-------| | The | e mathe | matician | G. | н. | Hardy | once | remarked | to | the | mathematic | ian | Srinivasa | Ramanujan |
4 | # A Very Interesting Number The mathematician G. H. Hardy once remarked to the mathematician Srinivasa Ramanujan... (Demo) So far, all SQL expressions have referred to the values in a single row at a time So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows create table animals as So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows ``` create table animals as select "dog" as kind, 4 as legs, 20 as weight union ``` So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows So far, all SQL expressions have referred to the values in a single row at a time ``` [[expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows So far, all SQL expressions have referred to the values in a single row at a time ``` [[expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows ``` create table animals as select "dog" as kind, 4 as legs, 20 as weight union select "cat" , 4 , 10 union select "ferret" , 4 , 10 union select "parrot" , 2 , 6 union select "penguin" , 2 , 10 union ``` So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows #### animals: | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows select max(legs) from animals; #### animals: | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows select max(legs) from animals; | max(legs) | | |-----------|--| | 4 | | | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | So far, all SQL expressions have referred to the values in a single row at a time ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] where [expression] order by [expression]; An aggregate function in the [columns] clause computes a value from a group of rows select max(legs) from animals; | max(legs) | | |-----------|--| | 4 | | (Demo) | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | An aggregate function also selects some row in the table to supply the values of columns that are not aggregated. In the case of max or min, this row is that of the max or min value. Otherwise, it is arbitrary. #### animals: | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | An aggregate function also selects some row in the table to supply the values of columns that are not aggregated. In the case of max or min, this row is that of the max or min value. Otherwise, it is arbitrary. ``` select max(weight), kind from animals; ``` #### animals: | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | An aggregate function also selects some row in the table to supply the values of columns that are not aggregated. In the case of max or min, this row is that of the max or min value. Otherwise, it is arbitrary. ``` select max(weight), kind from animals; select min(kind), kind from animals; ``` #### animals: | kind | legs | weight | | | | |---------|------|--------|--|--|--| | dog | 4 | 20 | | | | | cat | 4 | 10 | | | | | ferret | 4 | 10 | | | | | parrot | 2 | 6 | | | | | penguin | 2 | 10 | | | | | t-rex | 2 | 12000 | | | | An aggregate function also selects some row in the table to supply the values of columns that are not aggregated. In the case of max or min, this row is that of the max or min value. Otherwise, it is arbitrary. ``` select max(weight), kind from animals; select max(legs), kind from animals; select min(kind), kind from animals; ``` #### animals: | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | An aggregate function also selects some row in the table to supply the values of columns that are not aggregated. In the case of max or min, this row is that of the max or min value. Otherwise, it is arbitrary. ``` select max(weight), kind from animals; select max(legs), kind from animals; select min(kind), kind from animals; select avg(weight), kind from animals; ``` #### animals: | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | An aggregate function also selects some row in the table to supply the values of columns that are not aggregated. In the case of max or min, this row is that of the max or min value. Otherwise, it is arbitrary. ``` select max(weight), kind from animals; select max(legs), kind from animals; (Demo) ``` #### animals: | kind | legs | weight | | |---------|------|--------|--| | dog | 4 | 20 | | | cat | 4 | 10 | | | ferret | 4 | 10 | | | parrot | 2 | 6 | | | penguin | 2 | 10 | | | t-rex | 2 | 12000 | | | Grouping Rows | | | | | |---------------|--|--|--|--| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Rows in a table can be grouped, and aggregation is performed on each group Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex 2 | | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression select legs, max(weight) from animals group by legs; | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex 2 | | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression select legs, max(weight) from animals group by legs; | | kind | legs | weight | |---|---------|------|--------| | / | dog | 4 | 20 | | | cat | 4 | 10 | | | ferret | 4 | 10 | | | parrot | 2 | 6 | | | penguin | 2 | 10 | | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression select legs, max(weight) from animals group by legs; | | kind | legs | weight | |--------|---------|------|--------| | | dog | 4 | 20 | | legs=4 | cat | 4 | 10 | | | ferret | 4 | 10 | | | parrot | 2 | 6 | | | penguin | 2 | 10 | | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression select legs, max(weight) from animals group by legs; | | kind | legs | weight | |--------|---------|------|--------| | | dog | 4 | 20 | | legs=4 | cat | 4 | 10 | | | ferret | 4 | 10 | | Í | parrot | 2 | 6 | | i | penguin | 2 | 10 | | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression select legs, max(weight) from animals group by legs; | | kind | legs | weight | |--------|---------|------|--------| | legs=4 | dog | 4 | 20 | | | cat | 4 | 10 | | | ferret | 4 | 10 | | legs=2 | parrot | 2 | 6 | | | penguin | 2 | 10 | | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression select legs, max(weight) from animals group by legs; | | | | kind | legs | weight | | |------|-------------|--------|---------|------|--------|--| | legs | max(weight) | 1 | dog | 4 | 20 | | | | | legs=4 | cat | 4 | 10 | | | 2 | 20 | | ferret | 4 | 10 | | | | 12000 | | parrot | 2 | 6 | | | | | legs=2 | penguin | 2 | 10 | | | | | I | t-rex | 2 | 12000 | | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; The number of groups is the number of unique values of an expression select legs, max(weight) from animals group by legs; | | | | kind | legs | weight | |------|-------------|----------|---------|------|--------| | legs | max(weight) | 1 : | dog | 4 | 20 | | 1093 | | legs=4 | cat | 4 | 10 | | 4 | 20 | | ferret | 4 | 10 | | 2 | 12000 | _ | parrot | 2 | 6 | | | | legs=2 | penguin | 2 | 10 | | | | (Demo) | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; ### animals: weight/legs=5 | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; # animals: weight/legs=5 weight/legs=2 | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; weight/legs=5 weight/legs=2 weight/legs=2 | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; | weight/legs=5 | |---------------| | weight/legs=2 | | weight/legs=2 | | weight/legs=3 | | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; | weight/legs=5 | |---------------| | weight/legs=2 | | weight/legs=2 | | weight/legs=3 | | weight/legs=5 | | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; | weight/legs=5 | |-----------------| | weight/legs=2 | | weight/legs=2 | | weight/legs=3 | | weight/legs=5 | | weight/legs=600 | | | | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; | weight/legs | count(*) | |-------------|----------| | 5 | 2 | | 2 | 2 | | weight/legs=5 | |------------------| | weight/legs=2 | | weight/legs=2 | | weight/legs=3 | | weight/legs=5 | | weight/legs=6000 | | Killa | icgs | Weight | |--------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | animals: kind penguin t-rex weight 10 12000 Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; | weight/legs | count(*) | |-------------|----------| | 5 | 2 | | 2 | 2 | weight/legs=5 weight/legs=2 weight/legs=3 weight/legs=5 weight/legs=6000 | | | | | | - | | | | |---|---|---|--------|---|---|---|---|--| | 3 | n | 7 | m | 2 | | C | | | | Z | • | _ | . 1111 | a | L | 3 | • | | | | | | | | | | | | | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | Rows in a table can be grouped, and aggregation is performed on each group ``` [expression] as [name], [expression] as [name], ... ``` select [columns] from [table] group by [expression] having [expression]; A having clause filters the set of groups that are aggregated select weight/legs, count(*) from animals group by weight/legs having count(*)>1; | weight/legs | count(*) | |-------------|----------| | 5 | 2 | | 2 | 2 | weight/legs=6000 | | | | | | - | | | |---|---|---|---|---|---|---|--| | 3 | n | 7 | m | 2 | | C | | | 7 | | _ | ш | a | L | 3 | | | | | | | | | | | | kind | legs | weight | |---------|------|--------| | dog | 4 | 20 | | cat | 4 | 10 | | ferret | 4 | 10 | | parrot | 2 | 6 | | penguin | 2 | 10 | | t-rex | 2 | 12000 | # **Discussion Question** What's the maximum difference between leg count for two animals with the same weight? -----