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Implement bigs, which takes a Tree instance t containing integer labels. It returns the 
number of nodes in t whose labels are larger than any labels of their ancestor nodes. 
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    """Return the number of nodes in t that are larger than all their ancestors.""" 
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        ___________________________ 

        if ________________________: 

            n += 1 

        ___________________________: 
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Applying the Design Process



Designing a Function

Implement smalls, which takes a Tree instance t containing integer labels. It returns the 
non-leaf nodes in t whose labels are smaller than any labels of their descendant nodes. 
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def smalls(t): 
    """Return the non-leaf nodes in t that are smaller than all their descendants. 

    >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])]) 
    >>> sorted([t.label for t in smalls(a)]) 
    [0, 2] 

    """ 
    result = [] 
    def process(t): 

       

    process(t) 
    return result 
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def smalls(t): 
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    """Return the non-leaf nodes in t that are smaller than all their descendants. 

    >>> a = Tree(1, [Tree(2, [Tree(4), Tree(5)]), Tree(3, [Tree(0, [Tree(6)])])]) 
    >>> sorted([t.label for t in smalls(a)]) 
    [0, 2] 

    """ 
    result = [] 
    def process(t): 

       

    process(t) 
    return result

1

3

0

6

2

4 5

☑
☑

[ , ]

2

4 5

0

6

Signature: Tree -> List of Trees

        if t.is_leaf(): 
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