HW_SOURCE_FILE = 'hw04.py' ############### # Questions # ############### def intersection(st, ave): """Represent an intersection using the Cantor pairing function.""" return (st+ave)*(st+ave+1)//2 + ave def street(inter): return w(inter) - avenue(inter) def avenue(inter): return inter - (w(inter) ** 2 + w(inter)) // 2 w = lambda z: int(((8*z+1)**0.5-1)/2) def taxicab(a, b): """Return the taxicab distance between two intersections. >>> times_square = intersection(46, 7) >>> ess_a_bagel = intersection(51, 3) >>> taxicab(times_square, ess_a_bagel) 9 >>> taxicab(ess_a_bagel, times_square) 9 """ "*** YOUR CODE HERE ***" def squares(s): """Returns a new list containing square roots of the elements of the original list that are perfect squares. >>> seq = [8, 49, 8, 9, 2, 1, 100, 102] >>> squares(seq) [7, 3, 1, 10] >>> seq = [500, 30] >>> squares(seq) [] """ "*** YOUR CODE HERE ***" def g(n): """Return the value of G(n), computed recursively. >>> g(1) 1 >>> g(2) 2 >>> g(3) 3 >>> g(4) 10 >>> g(5) 22 >>> from construct_check import check >>> check(HW_SOURCE_FILE, 'g', ['While', 'For']) True """ "*** YOUR CODE HERE ***" def g_iter(n): """Return the value of G(n), computed iteratively. >>> g_iter(1) 1 >>> g_iter(2) 2 >>> g_iter(3) 3 >>> g_iter(4) 10 >>> g_iter(5) 22 >>> from construct_check import check >>> check(HW_SOURCE_FILE, 'g_iter', ['Recursion']) True """ "*** YOUR CODE HERE ***" def count_change(amount): """Return the number of ways to make change for amount. >>> count_change(7) 6 >>> count_change(10) 14 >>> count_change(20) 60 >>> count_change(100) 9828 >>> from construct_check import check >>> check(HW_SOURCE_FILE, 'count_change', ['While', 'For']) True """ "*** YOUR CODE HERE ***" def print_move(origin, destination): """Print instructions to move a disk.""" print("Move the top disk from rod", origin, "to rod", destination) def move_stack(n, start, end): """Print the moves required to move n disks on the start pole to the end pole without violating the rules of Towers of Hanoi. n -- number of disks start -- a pole position, either 1, 2, or 3 end -- a pole position, either 1, 2, or 3 There are exactly three poles, and start and end must be different. Assume that the start pole has at least n disks of increasing size, and the end pole is either empty or has a top disk larger than the top n start disks. >>> move_stack(1, 1, 3) Move the top disk from rod 1 to rod 3 >>> move_stack(2, 1, 3) Move the top disk from rod 1 to rod 2 Move the top disk from rod 1 to rod 3 Move the top disk from rod 2 to rod 3 >>> move_stack(3, 1, 3) Move the top disk from rod 1 to rod 3 Move the top disk from rod 1 to rod 2 Move the top disk from rod 3 to rod 2 Move the top disk from rod 1 to rod 3 Move the top disk from rod 2 to rod 1 Move the top disk from rod 2 to rod 3 Move the top disk from rod 1 to rod 3 """ assert 1 <= start <= 3 and 1 <= end <= 3 and start != end, "Bad start/end" "*** YOUR CODE HERE ***" ################### # Extra Questions # ################### from operator import sub, mul def make_anonymous_factorial(): """Return the value of an expression that computes factorial. >>> make_anonymous_factorial()(5) 120 >>> from construct_check import check >>> check(HW_SOURCE_FILE, 'make_anonymous_factorial', ['Assign', 'AugAssign', 'FunctionDef', 'Recursion']) True """ return 'YOUR_EXPRESSION_HERE'