
Function Examples



Announcements



Hog Contest Rules
• Up to two people submit one entry; 
Max of one entry per person 

• Your score is the number of entries 
against which you win more than 
50.00001% of the time 

• Strategies are time-limited 
• All strategies must be deterministic, 
pure functions of the players' scores 

• Winning entries will receive a paltry 
amount of extra credit 

• The real prize: honor and glory 
• See website for detailed rules

!3cs61a.org/proj/hog_contest
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Currying



Function Currying

def make_adder(n): 
    return lambda k: n + k

>>> make_adder(2)(3) 
5 
>>> add(2, 3) 
5

There's a general 
relationship between 

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function
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(Demo)



Decorators



Function Decorators

(Demo)

@trace1 
def triple(x): 
    return 3 * x 

is identical to 

def triple(x): 
    return 3 * x 
triple = trace1(triple) 

Decorated 
function

Why not just 
use this?

Function 
decorator
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Review



def delay(arg): 
    print('delayed') 
    def g(): 
        return arg 
    return g

What Would Python Display?

The print function returns None.  It also displays its arguments 
(separated by spaces) when it is called.

from operator import add, mul 
def square(x): 
    return mul(x, x)

Names in nested def 
statements can refer to 
their enclosing scope

A function that takes any 
argument and returns a 
function that returns 

that arg print(print(5))

delay(delay)()(6)()

print(delay(print)()(4))

None
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print(5)

None

6

None

5 5

None

5 
None

delayed 
delayed 
6

delayed 
4 
None

5

This expression Evaluates to
Interactive 
Output

5



What Would Python Print?

from operator import add, mul 
def square(x): 
    return mul(x, x)

def pirate(arggg): 
    print('matey') 
    def plunder(arggg): 
        return arggg 
    return plunder

A function that 
always returns the 
identity function

A name evaluates to the value bound to that name in the earliest frame of the current environment 
in which that name is found.

add(pirate(3)(square)(4), 1)

func square(x)

16
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The print function returns None.  It also displays its arguments 
(separated by spaces) when it is called.

This expression Evaluates to
Interactive 
Output

pirate(pirate(pirate))(5)(7)

17

Error Matey 
Matey 
Error

Matey 
17  

Identity function

5



Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask): 
    horse = mask 
    def mask(horse): 
        return horse 
    return horse(mask) 

mask = lambda horse: horse(2) 

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

2

λ [parent=Global]

horse

horse 2

2

2

    horse [parent=Global]

mask

f1:

       mask [parent=f1]

f2:

f3:



Implementing Functions



Implementing a Function
Read the description 

Verify the examples & pick a simple one 

Read the template 

Implement without the template, then change 
your implementation to match the template. 
OR 
If the template is helpful, use it. 

Annotate names with values from your chosen 
example 

Write code to compute the result 

Did you really return the right thing? 

Check your solution with the other examples
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def remove(n, digit): 
    """Return all digits of non-negative N  
       that are not DIGIT, for some  
       non-negative DIGIT less than 10. 

    >>> remove(231, 3)  
    21 
    >>> remove(243132, 2) 
    4313 
    """ 
    kept, digits = 0, 0 

    while ________________________________: 

        n, last = n // 10, n % 10 

        if _______________________________: 

            kept = _______________________ 

            digits = _____________________ 

    return _______________________________

231 33

21

n > 0

last != digit

kept + last

kept

digits + 1

*1010*

4

**digits

231

1

+ 30

+ 200

231
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def remove(n, digit): 
    """Return all digits of non-negative N  
       that are not DIGIT, for some  
       non-negative DIGIT less than 10. 

    >>> remove(231, 3)  
    21 
    >>> remove(243132, 2) 
    4313 
    """ 
    kept, digits = 0, 0 

    while ________________________________: 

        n, last = n // 10, n % 10 

        if _______________________________: 

            kept = _______________________ 

            digits = _____________________ 

    return _______________________________

231 3

21

n > 0

last != digit

kept    +   last

kept

/10

* 10 ** (digits-1)

digits + 1

round( )


