
Function Examples

Announcements

Hog Contest Rules
• Up to two people submit one entry;
Max of one entry per person

• Your score is the number of entries
against which you win more than
50.00001% of the time

• Strategies are time-limited
• All strategies must be deterministic,
pure functions of the players' scores

• Winning entries will receive a paltry
amount of extra credit

• The real prize: honor and glory
• See website for detailed rules

!3cs61a.org/proj/hog_contest

Keegan Mann 
Yan Duan & Ziming Li 
Brian Prike & Zhenghao Qian 
Parker Schuh & Robert Chatham

Fall 2011 Winners

Chenyang Yuan
Joseph Hui

Fall 2012 Winners

Paul Bramsen
Sam Kumar & Kangsik Lee
Kevin Chen

Fall 2013 Winners

Alan Tong & Elaine Zhao
Zhenyang Zhang
Adam Robert Villaflor & Joany Gao
Zhen Qin & Dian Chen
Zizheng Tai & Yihe Li

Fall 2014 Winners

Hog Contest Winners

!4

Sinho Chewi & Alexander Nguyen Tran
Zhaoxi Li
Stella Tao and Yao Ge

Spring 2015 Winners

Micah Carroll & Vasilis Oikonomou 
Matthew Wu 
Anthony Yeung and Alexander Dai

Fall 2015 Winners

Spring 2016 Winners

Michael McDonald and Tianrui Chen
Andrei Kassiantchouk
Benjamin Krieges

Fall 2016 Winners

Cindy Jin and Sunjoon Lee
Anny Patino and Christian Vasquez
Asana Choudhury and Jenna Wen
Michelle Lee and Nicholas Chew

Fall 2017 Winners 
 
Alex Yu and Tanmay Khattar
James Li
Justin Yokota

Your name could be here FOREVER!

Spring 2018 Winners

Eric James Michaud
Ziyu Dong
Xuhui Zhou

Fall 2018 Winners

Fall 2019 Winners

Rahul Arya
Jonathan Bodine
Sumer Kohli and Neelesh Ramachandran

Currying

Function Currying

def make_adder(n):
 return lambda k: n + k

>>> make_adder(2)(3)
5
>>> add(2, 3)
5

There's a general
relationship between

these functions

Curry: Transform a multi-argument function into a single-argument, higher-order function

!6

(Demo)

Decorators

Function Decorators

(Demo)

@trace1
def triple(x):
 return 3 * x

is identical to

def triple(x):
 return 3 * x
triple = trace1(triple)

Decorated
function

Why not just
use this?

Function
decorator

!8

Review

def delay(arg):
 print('delayed')
 def g():
 return arg
 return g

What Would Python Display?

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

from operator import add, mul
def square(x):
 return mul(x, x)

Names in nested def
statements can refer to
their enclosing scope

A function that takes any
argument and returns a
function that returns

that arg print(print(5))

delay(delay)()(6)()

print(delay(print)()(4))

None

!10

print(5)

None

6

None

5 5

None

5
None

delayed
delayed
6

delayed
4
None

5

This expression Evaluates to
Interactive
Output

5

What Would Python Print?

from operator import add, mul
def square(x):
 return mul(x, x)

def pirate(arggg):
 print('matey')
 def plunder(arggg):
 return arggg
 return plunder

A function that
always returns the
identity function

A name evaluates to the value bound to that name in the earliest frame of the current environment
in which that name is found.

add(pirate(3)(square)(4), 1)

func square(x)

16

!11

The print function returns None. It also displays its arguments
(separated by spaces) when it is called.

This expression Evaluates to
Interactive
Output

pirate(pirate(pirate))(5)(7)

17

Error Matey
Matey
Error

Matey
17  

Identity function

5

Global frame
horse

mask

func horse(mask) [parent=Global]

func λ(horse) [parent=Global]

def horse(mask):
 horse = mask
 def mask(horse):
 return horse
 return horse(mask)

mask = lambda horse: horse(2)

horse(mask)

Return Value

Return Value

Return Value

horse

func mask(horse) [parent=f1]

2

λ [parent=Global]

horse

horse 2

2

2

 horse [parent=Global]

mask

f1:

 mask [parent=f1]

f2:

f3:

Implementing Functions

Implementing a Function
Read the description

Verify the examples & pick a simple one

Read the template

Implement without the template, then change
your implementation to match the template. 
OR 
If the template is helpful, use it.

Annotate names with values from your chosen
example

Write code to compute the result

Did you really return the right thing?

Check your solution with the other examples

!14

def remove(n, digit):
 """Return all digits of non-negative N
 that are not DIGIT, for some
 non-negative DIGIT less than 10.

 >>> remove(231, 3)
 21
 >>> remove(243132, 2)
 4313
 """
 kept, digits = 0, 0

 while ________________________________:

 n, last = n // 10, n % 10

 if _______________________________:

 kept = _______________________

 digits = _____________________

 return _______________________________

231 33

21

n > 0

last != digit

kept + last

kept

digits + 1

1010

4

**digits

231

1

+ 30

+ 200

231

Implementing a Function
Read the description

Verify the examples & pick a simple one

Read the template

Implement without the template, then change
your implementation to match the template. 
OR 
If the template is helpful, use it.

Annotate names with values from your chosen
example

Write code to compute the result

Did you really return the right thing?

Check your solution with the other examples

!15

def remove(n, digit):
 """Return all digits of non-negative N
 that are not DIGIT, for some
 non-negative DIGIT less than 10.

 >>> remove(231, 3)
 21
 >>> remove(243132, 2)
 4313
 """
 kept, digits = 0, 0

 while ________________________________:

 n, last = n // 10, n % 10

 if _______________________________:

 kept = _______________________

 digits = _____________________

 return _______________________________

231 3

21

n > 0

last != digit

kept + last

kept

/10

* 10 ** (digits-1)

digits + 1

round()

