
CS 61A Lists, Mutability, ADTs, and Trees
Fall 2019 Guerrilla Section 2: October 18, 2019

1 Sequences
Questions

1.1 What would Python display?

lst = [1, 2, 3, 4, 5]

lst[1:3]

lst[0:len(lst)]

lst[-4:]

lst[3:]

lst[1:4:2]

lst[:4:2]

lst[1::2]

lst[::-1]

lst + 100

lst3 = [[1], [2], [3]]

lst + lst3

2 Lists, Mutability, ADTs, and Trees

1.2 Draw the environment diagram that results from running the code below

def reverse(lst):

if len(lst) <= 1:

return lst

return reverse(lst[1:]) + [lst[0]]

lst = [1, [2, 3], 4]

rev = reverse(lst)

1.3 Implement a function map mut that takes a list as an argument and maps a function

f onto each element of the list. You should mutate the original lists, without creating

any new lists. Do NOT return anything.

def map_mut(f, L):

>>> L = [1, 2, 3, 4]

>>> map_mut(lambda x: x**2, L)

>>> L

[1, 4, 9, 16]

1.4 Check your understanding

1 When copying the list, when are you copying a pointer of the list vs. copying

the actual value inside of a list?

2 How would you make a deep copy of a list?

Lists, Mutability, ADTs, and Trees 3

2 Mutability
Questions

2.1 Name two data types that are mutable. What does it mean to be mutable?

2.2 Name at least two data types at are not mutable.

2.3 Will the following code error? If so, why?

a = 1

b = 2

dt = {a: 1, b: 2}

a = [1]

b = [2]

dt = {a: 1, b: 2}

2.4 Fill in the output and draw a box-and-pointer diagram for the following code. If

an error occurs, write Error, but include all output displayed before the error.

a = [1, [2, 3], 4]

c = a[1]

c

a.append(c)

a

c[0] = 0

c

a

a.extend(c)

c[1] = 9

a

list1 = [1, 2, 3]

list2 = [1, 2, 3]

list1 == list2

list1 is list2

4 Lists, Mutability, ADTs, and Trees

2.5 Check your understanding:

1 What is the difference between the append function, extend function, and the

’+’ operator?

2 Given the below code, answer the following questions: a = [1, 2, [3, 4], 5]

b = a[:]

b[1] = 6

b[2][0] = 7

What does b evaluate to?

What does a evaluate to? Are a and b the same? Please explain your reasoning.

Lists, Mutability, ADTs, and Trees 5

3 Data Abstraction
Questions

3.1 What are the two types of functions necessary to make an Abstract Data Type?

What do they do?

3.2 Assume that rational, numer, denom, and gcd run without error and behave as

described below. Can you identify where the abstraction barrier is broken? Come

up with a scenario where this code runs without error and a scenario where this

code would stop working.

def rational(num, den): # Returns a rational number ADT

#implementation not shown

def numer(x): # Returns the numerator of the given rational

#implementation not shown

def denom(x): # Returns the denominator of the given rational

#implementation not shown

def gcd(a, b): # Returns the GCD of two numbers

#implementation not shown

def simplify(f1): #Simplifies a rational number

g = gcd(f1[0], f1[1])

return rational(numer(f1) // g, denom(f1) // g)

def multiply(f1, f2): # Multiples and simplifies two rational numbers

r = rational(numer(f1) * numer(f2), denom(f1) * denom(f2))

return simplify(r)

x = rational(1, 2)

y = rational(2, 3)

multiply(x, y)

3.3 Check your understanding

1 How do we know what we are breaking an abstraction barrier?

2 What are the benefits to Data Abstraction?

6 Lists, Mutability, ADTs, and Trees

4 Trees
Questions

4.1 Fill in this implementation of the Tree ADT.

def tree(label, branches = []):

for b in branches:

assert is_tree(b), 'branches must be trees'

return [label] + list(branches)

def is_tree(tree):

if type(tree) != list or len(tree) < 1:

return False

for b in branches(tree):

if not is_tree(b):

return False

return True

def label(tree):

def branches(tree):

def is_leaf(tree):

4.2 A min-heap is a tree with the special property that every nodes value is less than

or equal to the values of all of its children. For example, the following tree is a

min-heap:

1

/ | \

5 3 6

| / \

7 9 4

However, the following tree is not a min-heap because the node with value 3 has a

value greater than one of its children:

1

/ | \

5 3 6

| / \

7 9 2

Lists, Mutability, ADTs, and Trees 7

Write a function is min heap that takes a tree and returns True if the tree is a

min-heap and False otherwise.

def is_min_heap(t):

4.3 Write a function largest product path that finds the largest product path pos-

sible. A product path is defined as the product of all nodes between the root

and a leaf. The function takes a tree as its parameter. Assume all nodes have a

non-negative value.

3

/ | \

7 8 4

| |

2 1

For example, calling largest product path on the above tree would return 42,

since 3 * 7 * 2 is the largest product path.

def largest_product_path(tree):

"""

>>> largest_product_path(None)

0

>>> largest_product_path(tree(3))

3

>>> t = tree(3, [tree(7, [tree(2)]), tree(8, [tree(1)]), tree(4)])

>>> largest_product_path(t)

42

"""

4.4 Check your understanding:

1 Given the first tree in 4.2, write the corresponding python call to create the tree

2 What is the benefit of using a tree as a data structure, rather than a list or

linked list?

8 Lists, Mutability, ADTs, and Trees

3 Below is the function contains, which takes in an input of a tree, t and a value,

e. The function returns true if e exists as a label inside t. However, the function

does not work properly, debug this code and find the error(s).

def contains(t, e):

if is_leaf(t):

return False

elif e == label(t):

return True

else:

for b in branches(t):

return contains(b, e)

return True

4 Implement a function max tree, which takes a tree t. It returns a new tree with

the exact same structure as t; at each node in the new tree, the entry is the largest

number that is contained in that node’s subtrees or the corresponding node in t.

def max_tree(t):

>>> max_tree(tree(1, [tree(5, [tree(7)]),tree(3,[tree(9),tree(4)]),tree(6)]))

tree(9, [tree(7, [tree(7)]),tree(9,[tree(9),tree(4)]),tree(6)])

if ___________:

return _________________

else:

new_branches= ______________________________

new_label = __________________________________

return ______________________

Lists, Mutability, ADTs, and Trees 9

4.5 Challenge Question: The level-order traversal of a tree is defined as visiting the

nodes in each level of a tree before moving onto the nodes in the next level. For

example, the level order of the following tree is: 3 7 8 4

3

/ | \

7 8 4

Write a function level order that takes in a tree as the parameter and returns a

list of the values of the nodes in level order.

def level_order(tree):

4.6 Challenge Question: Write a function all paths which will return a list of lists of

all the possible paths of an input tree, t. When the function is called on the same

tree as the problem above, the function would return: [[3, 7], [3, 8], [3, 4]]

def all_paths(t):

if _______________:

else:

10 Lists, Mutability, ADTs, and Trees

5 Nonlocal
Questions

5.1 Draw an environment diagram for the following code:

spiderman = 'peter parker'

def spider(man):

def myster(io):

nonlocal man

man = spiderman

spider = lambda stark: stark(man) + ' ' + io

return spider

return myster

truth = spider('quentin is')('the greatest superhero')(lambda x: x)

Lists, Mutability, ADTs, and Trees 11

5.2 Draw an environment diagram for the following code:

fa = 0

def fi(fa):

def world(cup):

nonlocal fa

fa = lambda fi: world or fa or fi

world = 0

if (not cup) or fa:

fa(2022)

fa, cup = world + 2, fa

return cup(fa)

return fa(cup)

return world

won = lambda opponent, x: opponent(x)

us = won(fi(fa), 2019)

12 Lists, Mutability, ADTs, and Trees

5.3 Write make max finder, which takes in no arguments but returns a function which

takes in a list. The function it returns should return the maximum value it’s been

called on so far, including the current list and any previous list. You can assume

that any list this function takes in will be nonempty and contain only non-negative

values.

def make_max_finder():

"""

>>> m = make_max_finder()

>>> m([5, 6, 7])

7

>>> m([1, 2, 3])

7

>>> m([9])

9

>>> m2 = make_max_finder()

>>> m2([1])

1

"""

Lists, Mutability, ADTs, and Trees 13

5.4 Check your understanding:

x = 5

def f(x):

def g(s):

def h(h):

nonlocal x

x = x + h

return x

nonlocal x

x = x + x

return h

print(x)

return g

t = f(7)(8)(9)

a. What is t after the code is executed?

b. In the h frame, which x is being referenced? Which frame?

c. In the g frame, is a new variable x being created?

14 Lists, Mutability, ADTs, and Trees

6 OOP
Questions

6.1 What is the relationship between a class and an ADT?

6.2 What is the definition of a Class? What is the definition of an Instance?

6.3 What is a Class Attribute? What is an Instance Attribute?

6.4 What Would Python Display?

class Foo():

x = 'bam'

def __init__(self, x):

self.x = x

def baz(self):

return self.x

class Bar(Foo):

x = 'boom'

def __init__(self, x):

Foo.__init__(self, 'er' + x)

def baz(self):

return Bar.x + Foo.baz(self)

foo = Foo('boo')

Foo.x

foo.x

foo.baz()

Foo.baz()

Foo.baz(foo)

bar = Bar('ang')

Bar.x

bar.x

bar.baz()

Lists, Mutability, ADTs, and Trees 15

6.5 What Would Python Display?

class Student:

def __init__(self, subjects):

self.current_units = 16

self.subjects_to_take = subjects

self.subjects_learned = {}

self.partner = None

def learn(self, subject, units):

print('I just learned about ' + subject)

self.subjects_learned[subject] = units

self.current_units -= units

def make_friends(self):

if len(self.subjects_to_take) > 3:

print('Whoa! I need more help!')

self.partner = Student(self.subjects_to_take[1:])

else:

print("I'm on my own now!")

self.partner = None

def take_course(self):

course = self.subjects_to_take.pop()

self.learn(course, 4)

if self.partner:

print('I need to switch this up!')

self.partner = self.partner.partner

if not self.partner:

print('I have failed to make a friend :(')

tim = Student(['Chem1A', 'Bio1B', 'CS61A', 'CS70', 'CogSci1'])

tim.make_friends()

print(tim.subjects_to_take)

tim.partner.make_friends()

tim.take_course()

tim.partner.take_course()

tim.take_course()

tim.make_friends()

16 Lists, Mutability, ADTs, and Trees

6.6 Fill in the implementation for the Cat and Kitten classes. When a cat meows,

it should say ”Meow, (name) is hungry” if it is hungry, and ”Meow, my name is

(name)” if not. Kittens do the same thing as cats, except they say ”i’m baby”

instead of ”meow”, and they say ”I want mama (parents name)” after every call to

meow().

>>>cat = Cat('Tuna')

>>>kitten = kitten('Fish', cat)

>>>cat.meow()

meow, Tuna is hungry

>>>kitten.meow()

i'm baby, Fish is hungry

I want mama Tuna

>>>cat.eat()

meow

>>>cat.meow()

meow, my name is Tuna

>>>kitten.eat()

i'm baby

>>>kitten.meow()

meow, my name is Fish

I want mama Tuna

class Cat():

noise = 'meow'

def __init__(self, name):

def meow(self):

def eat(self):

print(self.noise)

self.hungry = False

class Kitten(Cat):

Lists, Mutability, ADTs, and Trees 17

7 Object Oriented Trees
Questions

7.1 Define filter tree, which takes in a tree t and one argument predicate function fn.

It should mutate the tree by removing all branches of any node where calling fn on

its label returns False. In addition, if this node is not the root of the tree, it should

remove that node from the tree as well.

def filter_tree(t, fn):

"""

>>> t = Tree(1, [Tree(2), Tree(3, [Tree(4)]), Tree(6, [Tree(7)])])

>>> filter_tree(t, lambda x: x % 2 != 0)

>>> t

tree(1, [Tree(3)])

>>> t2 = Tree(2, [Tree(3), Tree(4), Tree(5)])

>>> filter_tree(t2, lambda x: x != 2)

>>> t2

Tree(2)

"""

7.2 Fill in the definition for nth level tree map, which also takes in a function and a

tree, but mutates the tree by applying the function to every nth level in the tree,

where the root is the 0th level.

def nth_level_tree_map(fn, tree, n):

"""Mutates a tree by mapping a function all the elements of a tree.

>>> tree = Tree(1, [Tree(7, [Tree(3), Tree(4), Tree(5)]),

Tree(2, [Tree(6), Tree(4)])])

>>> nth_level_tree_map(lambda x: x + 1, tree, 2)

>>> tree

Tree(2, [Tree(7, [Tree(4), Tree(5), Tree(6)]),

Tree(2, [Tree(7), Tree(5)])])

"""

18 Lists, Mutability, ADTs, and Trees

Check Your Understanding
7.1 Why can we mutate trees using the Tree class? How does the Tree class differ from

the Tree ADT?

7.2 How do you guarantee that your code does not recurse forever? Do we need an

explicit base case?

Lists, Mutability, ADTs, and Trees 19

8 Linked Lists
Questions

8.1 What is a linked list? Why do we consider it a naturally recursive structure?

8.2 Draw a box and pointer diagram for the following:

Link('c', Link(Link(6, Link(1, Link('a'))), Link('s')))

8.3 The Link class can represent lists with cycles. That is, a list may contain itself as a

sublist. Implement has cycle that returns whether its argument, a Link instance,

contains a cycle. There are two ways to do this: iteratively with two pointers, or

keeping track of Link objects we’ve seen already. Try to come up with both!

def has_cycle(link):

"""

>>> s = Link(1, Link(2, Link(3)))

>>> s.rest.rest.rest = s

>>> has_cycle(s)

True

"""

8.4 Fill in the following function, which checks to see if sub link, a particular sequence

of items in one linked list, can be found in another linked list (the items have to be

in order, but not necessarily consecutive).

def seq_in_link(link, sub_link):

"""

>>> lnk1 = Link(1, Link(2, Link(3, Link(4))))

>>> lnk2 = Link(1, Link(3))

>>> lnk3 = Link(4, Link(3, Link(2, Link(1))))

>>> seq_in_link(lnk1, lnk2)

True

>>> seq_in_link(lnk1, lnk3)

False

"""

20 Lists, Mutability, ADTs, and Trees

Check Your Understanding
8.1 What can go in the first box of a linked list? What can go in the second?

8.2 For question 2, why do we need to store the linked list first in our code? Why can’t

we just iterate through it? Why can we iterate through the linked list without

storing it in question 3?

9 Iterators and Generators
Questions

9.1 What is the definition of an iterable? What is the definition of an iterator? What

is the definition of a generator? What built-in functions or keywords are associated

with each. Give an example of each.

9.2 Evaluate if each line is valid? If not, state the error and how you would fix it.

>>> new_list = [2, 3, 6, 8, 8, 3]

>>> next(new_list)

>>> iter(new_list)[1]

>>> [x for x in iter(new_list)]

>>> for i in range(len(iter(new_list))):

... new_list.append(2)

Lists, Mutability, ADTs, and Trees 21

9.3 What is the difference between these two statements?

a. def infinity1(start):

while True:

start = start + 1

return start

b. def infinity2(start):

while True:

start = start + 1

yield start

What would python display?

>>> infinity1

>>> infinity2

>>> infinity1(2)

>>> infinity2(2)

>>> x = infinity1(2)

>>> next(x)

>>> y = infinity2(2)

>>> next(y)

>>> next(y)

>>> next(infinity2(2))

22 Lists, Mutability, ADTs, and Trees

9.4 They can’t stop all of us!!! Write a function generate constant which, a generator

function that repeatedly yields the same value forever.

def generate_constant(x):

"""A generator function that repeats the same value x forever.

>>> area = generate_constant(51)

>>> next(area)

51

>>> next(area)

51

>>> sum([next(area) for _ in range(100)])

5100

"""

9.5 4.2 Now implement black hole , a generator that yields items in seq until one of

them matches trap, in which case that value should be repeated yielded forever.

You may assume that generate constant works. You may not index into or slice

seq.

def black_hole(seq, trap):

"""A generator that yields items in SEQ until one of them matches TRAP, in which case that

value should be repeatedly yielded forever.

>>> trapped = black_hole([1, 2, 3], 2)

>>> [next(trapped) for _ in range(6)]

[1, 2, 2, 2, 2, 2]

>>> list(black_hole(range(5), 7))

[0, 1, 2, 3, 4]

"""

Lists, Mutability, ADTs, and Trees 23

9.6 What Would Python Display?

>>> def weird_gen(x):

... if x % 2 == 0:

... yield x * 2

>>> wg = weird_gen(2)

>>> next(wg)

>>> next(weird_gen(2))

>>> next(wg)

>>> def greeter(x):

... while x % 2 != 0:

... print('hi')

... yield x

... print('bye')

>>> greeter(5)

>>> gen = greeter(5)

>>> g = next(gen)

>>> g = (g, next(gen))

>>> g

>>> next(gen)

>>> next(g)

An iterator ______________________ a generator

A generator is a(n) ______________________ iterator

24 Lists, Mutability, ADTs, and Trees

9.7 Write a generator function gen inf that returns a generator which yields all the

numbers in the provided list one by one in an infinite loop.

>>> t = gen_inf([3, 4, 5])

>>> next(t)

3

>>> next(t)

4

>>> next(t)

5

>>> next(t)

3

>>> next(t)

4

def gen_inf(lst):

Lists, Mutability, ADTs, and Trees 25

9.8 Implement a generator function called filter(iterable, fn) that only yields ele-

ments of iterable for which fn returns True.

def naturals():

i = 1

while True:

yield i

i += 1

def filter(iterable, fn):

"""

>>> is_even = lambda x: x % 2 == 0

>>> list(filter(range(5), is_even))

[0 , 2 , 4]

>>> all_odd = (2*y-1 for y in range (5))

>>> list(filter(all_odd, is_even))

[]

>>> s = filter(naturals(), is_even)

>>> next(s)

2

>>> next(s)

4

"""

9.9 What could you use a generator for that you could not use a standard iterator

paired with a function for?

26 Lists, Mutability, ADTs, and Trees

9.10 Define tree sequence, a generator that iterates through a tree by first yielding the

root value and then yielding the values from each branch.

def tree_sequence(t):

"""

>>> t = tree(1, [tree(2, [tree(5)]), tree(3, [tree(4)])])

>>> print(list(tree_sequence(t)))

[1, 2, 5, 3, 4]

"""

Lists, Mutability, ADTs, and Trees 27

9.11 Write a function make digit getter that, given a positive integer n, returns a

new function that returns the digits in the integer one by one, starting from the

rightmost digit.

Once all digits have been removed, subsequent calls to the function should return

the sum of all the digits in the original integer.

def make_digit_getter(n):

""" Returns a function that returns the next digit in n

each time it is called, and the total value of all the integers

once all the digits have been returned.

>>> year = 8102

>>> get_year_digit = make_digit_getter(year)

>>> for _ in range(4):

... print(get_year_digit())

2

0

1

8

>>> get_year_digit()

11

"""

28 Lists, Mutability, ADTs, and Trees

9.12 Sorry another environment diagram, but it’s the last one I promise.

def iter(iterable):

def iterator(msg):

nonlocal iterable

if msg == 'next':

next = iterable[0]

iterable = iterable[1:]

return next

elif msg == 'stop':

raise StopIteration

return iterator

def next(iterator):

return iterator('next')

def stop(iterator):

iterator('stop')

lst = [1, 2, 3]

iterator = iter(lst)

elem = next(iterator)

	Sequences
	Mutability
	Data Abstraction
	Trees
	Nonlocal
	OOP
	Object Oriented Trees
	Linked Lists
	Iterators and Generators

