
CS 61A Structure and Interpretation of Computer Programs
Spring 2020 Final Exam

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, on Google Forms. If either tool
stops working, switch to the other one and continue taking the exam. We will merge your solutions together at the
end of the exam, taking Google Form submissions in preference to submissions at exam.cs61a.org.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org
exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Who is your TA? (See cs61a.org/staff.html for pictures.)

Exam generated for <EMAILADDRESS> 3

1. (8 points) What Does This Function Do?

Complete the description of each function so that it correctly describes the function’s behavior.

(a) (4 points)

def count(n, t, k):
if n == 0:

return int(t <= 0)
elif k > n:

return 0
else:

a = count(n, t, k + 1)
b = count(n-k, t-1, k)
return a + b

Hint : int(False) evaluates to 0 and int(True) evaluates to 1.

As in count_partitions from the Midterm 2 Study Guide, a “way of summing to n using parts” is a sum
of zero or more positive integers (the parts) that appear in non-decreasing order and total n. For example,
1 + 2 is a way of summing to 3 using 2 parts, but 2 + 1 is not.

Complete this description: count(n, t, k) counts the ways of summing to n using . . .

i. (2 pt)

. . . at least t parts . . .

. . . at most t parts . . .

. . . at least k parts . . .

. . . at most k parts . . .

ii. (2 pt)

. . . that are all less than or equal to t.

. . . that are all greater than or equal to t.

. . . that are all less than or equal to k.

. . . that are all greater than or equal to k.

Exam generated for <EMAILADDRESS> 4

(b) (4 points)

def prime(n):
"""Return the smallest prime number larger than n.

>>> prime(2)
3
>>> prime(8)
11
>>> prime(prime(8))
13
>>> prime(prime(prime(8)))
17
"""
<implementation omitted>

def again():
f, g = prime, prime
def h(x):

nonlocal g
g, h = (lambda h: lambda y: h(f(y)))(g), g(x)
return h

return h

Assume that prime is implemented correctly and behaves as its docstring describes.

Below, applying prime to x repeatedly 3 times means evaluating prime(prime(prime(x))).

Complete this description: again() returns a function h that takes a number x and returns the result
of applying prime to x repeatedly . . .

i. (2 pt)

. . . k-1 times . . .

. . . k times . . .

. . . k+1 times . . .

. . . 2 ** k times . . .

ii. (2 pt)

. . . where k is the number of times that this h function has been called.

. . . where k is the number of times that prime has been called during a call to this h function.

. . . where k is the total number of times that all h functions returned by calling again() (perhaps
multiple times) have been called throughout the whole program.

. . . where k is the total number of times that prime has been called (perhaps in other ways than
by this h function) throughout the whole program.

Exam generated for <EMAILADDRESS> 5

2. (12 points) Mind Your P’s and Q’s

(a) (6 points)

Fill in each blank in the code example below so that its environment diagram is the following:

https://i.imgur.com/xPJsDGg.png

p = [[2], [2, 2]]

p[0]._________(_________)
(a) (b)

q = [_________, _________]
(c) (d)

p_________ = 3
(e)

i. (1 pt) Which of the following names could complete blank (a)?

add

pop

append

extend

ii. (1 pt) Which of the following expressions could complete blank (b)?

p

p[0]

p[1]

p[:]

iii. (1 pt) Which of the following expressions could complete blank (c)?

p.pop()

p[1]

p[0]

p[:1]

iv. (1 pt) Which of the following expressions could complete blank (d)?

p.pop()

p[1]

p[0]

p[:1]

Exam generated for <EMAILADDRESS> 6

v. (2 pt) Write code that could complete blank (e).

Exam generated for <EMAILADDRESS> 7

(b) (6 points)

Fill in each blank in the code example below so that its environment diagram is the following:

https://i.imgur.com/qk83xRw.png

def r(rr):

if rr:

def r(week):

return [_________, rr]
(a)

rr = _________
(b)

return r(_________)
(c)

r(5)_________
(d)

Note: Line numbers for lambda functions have been omitted intentionally.

Exam generated for <EMAILADDRESS> 8

i. (1 pt) Write an expression that could complete blank (a).

ii. (1 pt) Write an expression that could complete blank (b).

iii. (2 pt) Write an expression that could complete blank (c).

iv. (2 pt) Which of these could complete blank (d)?

.pop()([4])

.pop()(4)

[0](4)

[0]([4])

Exam generated for <EMAILADDRESS> 9

3. (12 points) Bounds

Definitions: A bound is a two-element tuple of numbers in which element 0 is smaller than element 1. A
number t is contained in bound b if b[0] < t and t < b[1]. How tight a bound b is around a number t
describes the largest absolute distance between t and one of the numbers in b. For example, the tightness of
bound (1, 7) around 6 is 5 because the absolute difference between 6 and 1 is 5.

(a) (2 points)

Implement minimum, which takes a list s and a one-argument function key. It returns the value in s for
which key produces the smallest return value. If s is empty, minimum returns None. If more than one value
in s produces a key value at least as small as all others, then minimum returns the first.

def minimum(s, key):
"""Return the first value v in s for which key(v) is less than or equal to
key(w) for all values w in s. Return None if s is empty.

>>> minimum([5, 4, 3, 2, 1], lambda x: abs(x - 3.1)) # Closest to 3.1
3
>>> a = [3]
>>> minimum([[5], [4], a, [3], [2], [1]], lambda x: abs(x[0] - 3.1)) is a
True
"""
if not s:

return None

m = s[0]

for v in s[1:]:

if _________:
(a)

m = v

return m

i. (2 pt) What expression completes blank (a)?

Important: You may not call the built-in min or max functions for this blank.

Exam generated for <EMAILADDRESS> 10

(b) (4 points)

Implement tightest, which takes a list of bounds and a number t. It returns the first bound in bounds
that both contains t and is the most tight around t. If no bound in bounds contains t, tightest returns
None.

Assume minimum is implemented correctly.

def tightest(bounds, t):
"""Return the tightest bound around t in bounds.

>>> bounds = [(2, 6), (3, 4), (1, 5), (1, 6), (0, 4)]
>>> tightest(bounds, 3)
(1, 5)
>>> tightest(bounds, 3.1)
(3, 4)
>>> tightest(bounds, 5)
(2, 6)
>>> tightest(bounds, 2)
(0, 4)
>>> print(tightest(bounds, 6))
None
"""
return minimum([b for b in bounds if _________],

(a)

lambda b: _________)
(b)

i. (2 pt) What expression completes blank (a)?

Important: You may not call the built-in min or max functions for this blank.

ii. (2 pt) What expression completes blank (b)?

max(t - b[0], b[1] - t)

abs(t - max(b))

[abs(t - x) for x in b][0]

abs(max([t - x for x in b]))

Exam generated for <EMAILADDRESS> 11

(c) (6 points)

Implement nest, which takes a list of bounds. It returns the largest number of bounds in the list that all
overlap with each other.

def overlap(a, b):
"""Return whether there is some number t contained in both a and b.

>>> overlap([2, 4], [1, 3]) # 2.5 is contained in both bounds.
True
>>> overlap([1, 3], [2, 4]) # 2.5 is contained in both bounds.
True
>>> overlap([2, 4], [1, 2]) # No number is contained in both bounds.
False
"""
return a[0] < b[1] and b[0] < a[1]

def nest(bounds):
"""Return the maximum number of bounds that all contain the same number.

>>> bounds = [(2, 6), (3, 4), (1, 5), (1, 6), (0, 4), (0, 3)]
>>> nest(bounds) # All but the last contain 3.1, so these 5 all overlap with each other.
5
>>> bounds = [(1, 5), (5, 7), (7, 9), (1, 9)]
>>> nest(bounds) # Any of the first three overlaps with the last, but not with each other.
2
>>> bounds = [(1, 9), (1, 5), (5, 7), (7, 9)]
>>> nest(bounds) # The first overlaps with any of the last three.
2
>>> bounds = [(2, 4), (1, 3), (1, 2)]
>>> nest(bounds) # Any two consecutive bounds overlap, but the first & last do not overlap.
2
"""
if not bounds:

return 0

rest = [b for b in bounds[1:] if overlap(b, _________)]
(a)

return max(nest(_________), 1 + _________)
(b) (c)

i. (2 pt) What expression completes blank (a)?

ii. (2 pt) What expression completes blank (b)?

bounds

bounds[1:]

rest

bounds[0] + rest

Exam generated for <EMAILADDRESS> 12

iii. (2 pt) What expression completes blank (c)?

Exam generated for <EMAILADDRESS> 13

No more questions.

