
GUIs
10 / 09 16 / 19

Rahul Arya

Graphical User Interfaces

[Demo]

Various Platforms / Languages / Tools

● Android / iOS / Desktop / Web / ...

● Java / Swift / C# / JavaScript / ...

● Android Studio / Xcode / Visual Studio / WebStorm / ...

● What’s the common element?

● Component-level abstraction

Anatomy of a cat

Anatomy of a cat CATS

Indicators

Leaderboard
Buttons

Header

Text Prompt

Typed Input

Options

Restart Button

Anatomy of a cat CATS

Indicators

WPM Indicator Accuracy
Indicator

Time Indicator

Anatomy of a cat CATS

WPM Indicator

WPM Text

WPM Box Border

GUIs are trees!

...

...

... ...

... ...

Web Development

Web Development in 2 minutes

● Why web development? Easy to pick up, play around in your

browser, runs on pretty much every device!

● HTML
○ Describes the organization of a web page

○ Made up of “tags” in a tree structure:
<body>

<div attribute=“value”> <input>

Some text <div>

Some more

content
<button>

Click me!

[Demo]

<body>

<div attribute=“value”>

Some text

<div>

Some more content

<button>

Click me!

</button>

</div>

</div>

<input />

</body>

Web Development in 2 minutes
● JavaScript

● At a high-level, similar-“ish” to Python

● Just new syntax - semicolons, braces, indentation optional!

[Demo]

Syntax Python JavaScript

Variable assignment x = 5 let x = 5;

Variable reassignment x = 5 x = 5;

Function declaration def func(arg1, arg2):
 cat = arg1 + arg2
 return cat

let func = (arg1, arg2) => {
 let cat = arg1 + arg2;
 return cat;
};

Class declaration class CS61A(CSClass):
 def __init__(self, prof):
 super().__init__()
 self.prof = prof

 def gobears(self, gostr):
 return gostr + self.prof

class CS61A extends CSClass {
 constructor(prof) {
 super();
 this.prof = prof;
 }
 gobears(gostr) {
 return gostr + this.prof;
 };
}

Web Development in 2 minutes

● CSS

● Describes “style” / appearance of a website

● Colors, animations, layout

● Will not discuss further, since it’s specific to the web

● [extra] If you’re interested, a great CSS tutorial is at MDN:

https://developer.mozilla.org/en-US/docs/Web/CSS

React
(reactjs.org)

What problems does React solve?

● Manipulating the DOM tree directly is a pain as it gets more

complex

● The “component tree” of our GUI doesn’t line up with the DOM

tree in the browser

Solutions

● React enforces abstraction barriers between components
○ Each node in the “component tree” is its own class, so components can’t

depend on implementation details of other components

● Below the abstraction barrier, React (efficiently) generates

and updates the DOM tree as the component tree changes

● React components must:
○ Inherit from React.Component

○ Have a render() method that describes its children / subtree

○ render() typically describes its subtree using JSX

React Components and JSX

<div>

<Header> <Body>

<WebPage>

Example:

class WebPage extends React.Component {

// render is a function of no arguments

render() {

return (

<div>

<Header />

<Body />

</div>

);

};

}

React Components and JSX

class Header extends React.Component {

render() {

return (

<h2>

Header!

</h2>

);

};

}

class Body extends React.Component {

render() {

return (

<div>

Some body text.

</div>

);

};

}

<Header>

<h2>

Header!

<Body>

<div>

Some body

text.

React Components and JSX

<Header>

<h2>

Header!

<Body>

<div>

Some body

text.

<div>

<Header> <Body>

<WebPage>

<div>

<h2>

Header!

<div>

Some body

text.

[Demo]

Render a list of components:

class WebPage extends React.Component {

render() {

let bodyList = [];

let i = 0;

while (i < 3) {

bodyList.push(<Body />);

i += 1;

}

return (

<div>

<Header />

{bodyList}

</div>

);

};

}

More JSX

Include an expression in JSX:

class WebPage extends React.Component {

render() {

return (

<div>

1 + 2 is

{“ ”}

{1 + 2}

</div>

);

};

}

Passing information to child components

● The parent component may need to pass information to the child

components

● Solution: props

● Props are essentially “arguments” for a component

● Received by the component’s constructor

● Stored in a dictionary in the attribute this.props

[Demo]

Passing information to child components

class WebPage extends React.Component {

render() {

return (

<div>

<Header />

<Button

text=“some text”

/>

</div>

);

};

}

class Button extends React.Component {

render() {

return (

<div>

<button>

{this.props.text}

</button>

</div>

);

};

}

[Demo]

Passing information to child components
class WebPage extends React.Component {

render() {

let buttonList = [];

let i = 0;

while (i < 3) {

buttonList.push(

<Button

text={“Button #” + i}

/>

);

i += 1;

}

return (

<div>

<Header />

{buttonList}

</div>

);

};

}
[Demo]

Responding to user input

● So far, we can display information, but not respond to

interaction!

● Want code to run when the user does something e.g. clicks a

button, types some text, etc.

● Solution: event handlers

● Functions that are called when an “event” occurs - often some

form of user interaction

● Can be specified using JSX:

<button onClick={handleClick}>

{this.props.text}

</button>

● handleClick will be called when the <button> is clicked

[Demo]

Responding to user input
class Button extends React.Component {

let handleClick = () => {

alert(“Clicked! I am ” + this.props.text);

};

render() {

return (

<div>

<button onClick={handleClick}>

{this.props.text}

</button>

</div>

);

};

}

[Demo]

Persistent State

● We know how to call a function when an event happens

● But our functions don’t do anything persistent!

● We need to give our components some sort of memory

● In Python, we’d use an instance attribute
○ Initialized in the constructor

○ Updated in the event handler

● Problem!

● The component does not rerender - React does not know when we

update an attribute

● Can use the forceUpdate() method to fix

[Demo]

Responding to user input
class Button extends React.Component {

constructor(props) {

super(props);

this.numberOfClicks = 0;

}

let handleClick = () => {

this.numberOfClicks += 1;

this.forceUpdate();

};

render() {

return (

<div>

<button onClick={handleClick}>

{“Clicked ” + this.numberOfClicks + “times !”}

</button>

</div>

);

};

}

[Demo]

Persistent State

● forceUpdate() is a solution, but it’s not the best one

● We shouldn’t need to tell React when to update, that breaks

the abstraction barrier - components should not know about

“updates”

● Components should notify React when their state changes, and

React can decide when an update is needed

● A component’s render method should only rely on its state

● When the state changes, a render should happen at some point

Persistent State

● State is stored in the this.state instance attribute,

initialized in the constructor

● Updated using the this.setState() method, so React knows when

updates happen

[Demo]

Responding to user input
class Button extends React.Component {

constructor(props) {

super(props);

this.state = {

numberOfClicks: 0,

}

}

render() {

let handleClick = () => {

this.setState({

numberOfClicks: this.state.numberOfClicks + 1

});

};

return (

<div>

<button onClick={handleClick}>

{“Clicked ” + this.state.numberOfClicks + “times !”}

</button>

</div>

);

};

}

[Demo]

Event Handlers as Props

● Often, we want the parent component to update its state in

response to an event handler on the child

● Example: When a button is clicked, the header should update a

counter

● Event handler must be in the parent component to update state

● But must be bound to an element in the child component

● Solution: Pass the event handler as a prop to the child

[Demo]

Responding to user input
class WebPage extends React.Component {

...

let handleClick = () => {

this.setState({

numberOfClicks: this.state.numberOfClicks + 1

});

};

...

buttonList.push(

<Button

onClick={handleClick}

/>

);

...

}

class Button extends React.Component {

...

let handleClick = () => {

this.props.onClick();

};

...

}

[Demo]

Summary + Thinking in React

● Directly manipulating the DOM tree gets complicated and messy

fast - better to deal with a GUI as a tree of isolated

components

● Components are classes that inherit from React.Component and

that have a render() method

● Abstraction barriers isolate implementation of each component

● React updates the DOM tree below the abstraction barrier

● Data flows down the component tree in the form of props

● User input is captured using event handlers

● State is updated using setState() so React knows to re-render

the DOM Tree

● Event handlers can be passed down the tree as props for events

to flow up the component tree

Next Steps

● Interested in React / GUIs? Awesome!

● Check out the cats project GUI at

https://github.com/Cal-CS-61A-Staff/cats-gui

● MDN JavaScript tutorial is a good, rigorous introduction to

JavaScript for a 61A student

○ https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps

● Official React tutorial is excellent, goes into a lot more

depth

○ https://reactjs.org/

● Resources are available for Android / iOS development as well

