Control

Announcements

Print and None

(Demo)

None Indicates that Nothing is Returned

The special value None represents nothing in Python
A function that does not explicitly return a value will return None

Careful: None is not displayed by the interpreter as the value of an expression

>>> def does_not_return_square(x):

A - No return

>>> does_not return_square(4)<:£ None value is not displayed]

The name sixteen
is now bound to
the value None

isixteen = oes_not_return_square(4)

>>> sixteen + 4
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for +: 'NoneType' and 'int'

Pure Functions & Non-Pure Functions

2 p abs N
B

Pure Functions
just return values

Non-Pure Functions
have side effects

A side effect isn't a
value; it's anything
that happens as a
consequence of
calling a function

Python displays the output “-2”

Nested Expressions with Print
None, None P print(...):
T Fﬁ

display “None None”

Does not get
splayed

None
| S

>>> print(print(1), print(2))
1

2
None None

[print(print(1), print(2))

Noﬁé

print(1)

1p print(...):
Lrﬁ

display “1”

func print(.) ‘

) None

2 p print(...):
J e

[ione |

print(2)

» None

~

display “2”

Multiple Environments

Life Cycle of a User-Defined Function

Formal parameter

Def statement: [Aﬁgagg}>

Def
statement e

Call expression:

Return
expression

operand: 2+2
argument: 4

operator: square
function: func square(x)

Calling/Applying: f :
(signsture | "

(Demo)

What happens?

A new function is created!

Name bound to that function
in the current frame

Operator & operands evaluated

Function (value of operator)
called on arguments
(values of operands)

A new frame is created!
Parameters bound to arguments

Body is executed in that new
environment

Multiple Environments in One Diagram!

Global frame func mul(...)

from operator import mul
def square(x): mul

func square(x) [parent=Global]
return mul(x, x) square ‘/‘>
- square(square(3))

Multiple Environments in One Diagram!

Global frame func mul(...)

from operator import mul
def square(x): mul

- return mul(x, x) square
square(square(3))

func square(x) [parent=Globall]

f1l: square [parent=Globall]

x 3
Return
value
square(square(3)) square(square(3))
func squvére(x)] func squvére(x) (9
[square(3) J L square(3)” }
func squvére(x) func squére(x)
Multiple Environments in One Diagram! Names Have No Meaning Without Environments
from operator import mul o Global frame func mul(...) from operator import mul o Global frame func mui(...)
def square(x): mul func square(x) [parent=Globall] def square(x):‘ --------- 5 mul func square(x) [parent=Globall]
- return mul(x, x) square - return mul(x, x) square

square(square(3))
f1: square [parent=Global]
x (3

Return 9
value

f2: square [parent=Global]
x |9

Return 81
value

An environment is a sequence of frames.

" T func squvére(x) P 9 J

L square(3))

R * The global frame alone
func square(x)

* A local, then the global frame

square(square(3)) !

: square [parent=Global]
x |3

Return 9
value

: . : square [parent=Global]
Every expression is

evaluated in the context x |9
of an environment. Return [g,
value
A name evaluates to the
value bound to that name An environment is a sequence of frames.
in the earliest frame of
the current environment in e The global frame alone

which that name is found.
* A local, then the global frame

Names Have Different Meanings in Different Environments

A call expression and the body of the function being called

are evaluated in different environments

from operator import mul Global frame
def square(square): mul
return mul(square, square
(s a) square
square(4)

f1l: square [parent=Global]

square 4
Every expre'zssmn is Retumn | ;¢
evaluated in the context value

of an environment.

A name evaluates to the
value bound to that name
in the earliest frame of
the current environment in
which that name is found.

func mul(...)

func square(square) [parent=Global]

Miscellaneous Python Features

Multiple Return Values

Default Arguments

Conditional Statements

Statements

A statement is executed by the interpreter to perform an action

Compound statements:

Clause

| <header>:

<separating header>:
<statement>
<statement>

The first header determines a
statement’s type

The header of a clause
“controls” the suite that
follows

def statements are compound
statements

Compound Statements

Compound statements:

A suite is a sequence of
statements

To “execute” a suite means to
execute its sequence of
statements, in order

<statement>
<statement>

Execution Rule for a sequence of statements:
* Execute the first statement

* Unless directed otherwise, execute the rest

Conditional Statements

def absolute_value(x):

"""Return the absolute value of x.

if x < 0:

1 statement, return -x
3 clauses, elif x == 0:
3 headers, return 0

3 suites else:
return x

Execution Rule for Conditional Statements:

Each clause is considered in order.
1. Evaluate the header's expression.

2. If it is a true value,
execute the suite & skip the remaining clauses.

Syntax Tips:

1. Always starts with "if" clause.
2. Zero or more "elif" clauses.

3. Zero or one "else" clause,
always at the end.

Boolean Contexts

def absolute_value(x):
"""Return the absolute value of x.
if x < 0:
return -x
elif x == 0:
return 0
else:
return x

George Boole

Boolean Contexts

def absolute_value(x):

if |x <

"""Return the absolute value of x.

return -x
elif
return 0

Two boolean contexts

else:
return x
Geo;gé Bogle
False values in Python: False, @, '', None (more to come)
True values in Python: Anything else (True)

Read Section 1.5.4!

(Demo)

Reading: http://composingprograms.com/pages/15-control.html#conditional-statements

Iteration

While Statements

George Boole

(Demo)
> i, total =0, 0 Global frame
B> 2 while(i_< 3k I EX X3
> i=di+1 total B X X 6
> total = total + i

Execution Rule for While Statements:
1. Evaluate the header’s expression.
2. If it is a true value,

execute the (whole) suite,
then return to step 1.

(Demo)

Example: Prime Factorization

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

=2 %2 %2
9 =3x%3
10 =2 %5
11 = 11
12 =2%2x%3

One approach: Find the smallest prime factor of n, then divide by it

858 =2 %429 =2 %3 % 143 =2 % 3 x 11 x 13

(Demo)

