Higher-Order Functions

Announcements

Office Hours: You Should Go!

https://cs6la.org/office-hours/

You are not alone!

Example: Prime Factorization

Prime Factorization

Each positive integer n has a set of prime factors: primes whose product is n

8

=2x%x2x%x2
9 =3x%3
10 =2 x5
11 = 11
12=2%2%3 Example: Iteration

One approach: Find the smallest prime factor of n, then divide by it

858 =2 %429 =2 %3 % 143 =2 % 3 *x 11 % 13

(Demo)

The Fibonacci Sequence

fib pred | <) 5
curr | °8
n |5
k|3
L] Go Bears!

def fib(n):
"""Compute the nth Fibonacci number, for N >= 1."""
pred, curr =0, 1 # 0th and 1st Fibonacci numbers
k=1 # curr is the kth Fibonacci number
while k < n:
pred, curr = curr,{
> k=k+1
return curr [The next Fibonacci number is the sum of
the current one and its predecessor

Designing Functions

Describing Functions

A function's domain is the set of all inputs it might
possibly take as arguments.

A function's range is the set of output values it might
possibly return.

A pure function's behavior is the relationship it
creates between input and output.

def square(x):
"""Return X *x X.'

X 1s a number

square returns a non-
negative real number

square returns the
square of x

A Guide to Designing Function
Give each function exactly one job, but make it apply to many related situations

>>> round(1.23) >>> round(1.23, 1) >>> round(1.23, 0) >>> round(1.23, 5)
1 1.2 1 1.23

Don’'t repeat yourself (DRY): Implement a process just once, but execute it many times

(Demo)

Generalization

Generalizing Patterns with Arguments

Regular geometric shapes relate length and area.

Shape:

Area:

Finding common structure allows for shared implementation

(Demo)

Higher-Order Functions

Generalizing Over Computational Processes

The common structure among functions may be a computational process, rather than a number.

1+2+3+4+45 =15
12423 +3% 443 + 5 =225
* 8 8 8 8 8
: T - R =3.04
Z‘ 3735 99" 105 " 323

(Demo)

Summation Example

% |Function of a single argument
; (not called “term")

def cube(k):
3 return pow(k, 3)

- (A formal parameter that will
def summation(n, {ter be bound to a function
"""Sum the first n terms of a sequence.

_.>>> summation(5,)
W The cube function is passed
total, k = 0 1 as an argument value

4 - 4
while k <= n: i
total, k = total +
return total

The function bound to term
0+ 1+ 8+ 27 + 64 + 125] [gets called here }

Functions as Return Values

(Demo)

Locally Defined Functions

Functions defined within other function bodies are bound to names in a local frame

A function that
returns a function

Return a function that takes one argument k and returns k + n.

>>> i'_'add_three = make_adder(B)'} The name add_three is bound
>>> add thiee(%) ! to a function

W

{def adder (k

another def statement

) : T A def statement within }

Can refer to names in the
enclosing function

Call Expressions as Operator Expressions

An expression that
evaluates to its argument

An expression that

evaluates to a function

Operator Operand
3
[make_adder (1) (2)]

‘Tfunc adder(k) | <™
make_adder(1)

func make_adder(n) } make_adder(n):
def adder(k):

return k + n)
return adder) func adder(k)

