
Functional Abstraction

Announcements

Lambda Function Environments

Environment Diagrams with Lambda

A lambda function's parent is the current frame in which the lambda expression is evaluated

4
https://pythontutor.com/composingprograms.html#code=a%20%3D%201%0Adef%20f%28g%29%3A%0A%20%20%20%20a%20%3D%202%0A%20%20%20%20return%20lambda%20y%3A%20a%20*%20g%28y%29%0Af%28lambda%20y%3A%20a%20%2B%20y%29%28a%29&cumulative=true&curInstr=0&mode=display&origin=composingprograms.js&py=3&rawInputLstJSON=%5B%5D

Return

Return Statements

A return statement completes the evaluation of a call expression and provides its value:

6

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):
 """Print the final digits of N in reverse order until D is found.

 >>> end(34567, 5)
 7
 6
 5
 """
 while n > 0:
 last, n = n % 10, n // 10
 print(last)
 if d == last:
 return None (Demo)

Control

If Statements and Call Expressions

Let's try to write a function that does the same thing as an if statement.

8

Each clause is considered in order.

1. Evaluate the header's expression (if present).

2. If it is a true value (or an else header),
execute the suite & skip the remaining clauses.

Execution Rule for Conditional Statements:

if __________:

else:

if_(________, ________, ________)

"if"
clause

"else"
clause

"if" header
expression

"if" suite

"else" suite

This function
doesn't exist

def if_(c, t, f):
 if c:
 return t
 else:
 return f

"if" header
expression

"if"
suite

"else"
suite

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the
operand subexpressions

2. Apply the function that is the
value of the operator
to the arguments that are the
values of the operands

(Demo)

Control Expressions

Logical Operators

To evaluate the expression <left> and <right>:

1. Evaluate the subexpression <left>.

2. If the result is a false value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

2. If the result is a true value v, then the expression evaluates to v.

3. Otherwise, the expression evaluates to the value of the subexpression <right>.

10

(Demo)

Abstraction

Functional Abstractions

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

def square(x):
 return pow(x, 2)

def square(x):
 return mul(x, x-1) + x

If the name “square” were bound to a built-in function,
sum_squares would still work identically.

Yes

No

Yes

No

What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x) + square(y)

12

From: To:

Choosing Names

Names typically don’t matter for correctness

but

they matter a lot for composition

true_false rolled_a_one

d dice

helper take_turn

13

Names should convey the meaning or purpose
of the values to which they are bound.

The type of value bound to the name is best
documented in a function's docstring.

Function names typically convey their effect
(print), their behavior (triple), or the
value returned (abs).

my_int num_rolls

l, I, O k, i, m

Which Values Deserve a Name

Reasons to add a new name

Repeated compound expressions:

if sqrt(square(a) + square(b)) > 1:
 x = x + sqrt(square(a) + square(b))

Meaningful parts of complex expressions:

x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

discriminant = square(b) - 4 * a * c
x1 = (-b + sqrt(discriminant)) / (2 * a)

14

More Naming Tips

• Names can be long if they help
document your code:

average_age = average(age, students)

is preferable to

Compute average age of students
aa = avg(a, st)

• Names can be short if they represent
generic quantities: counts,
arbitrary functions, arguments to
mathematical operations, etc.

n, k, i - Usually integers
x, y, z - Usually real numbers
f, g, h - Usually functions

PRAC
TICA

L

GUID
ELIN

ES

Errors & Tracebacks

Taxonomy of Errors

Syntax Errors

16

(Demo)

Runtime Errors

Logic & Behavior Errors

Detected by the Python
interpreter (or editor)
before the program executes

Detected by the Python
interpreter while the program
executes

Not detected by the Python
interpreter; what tests are for

