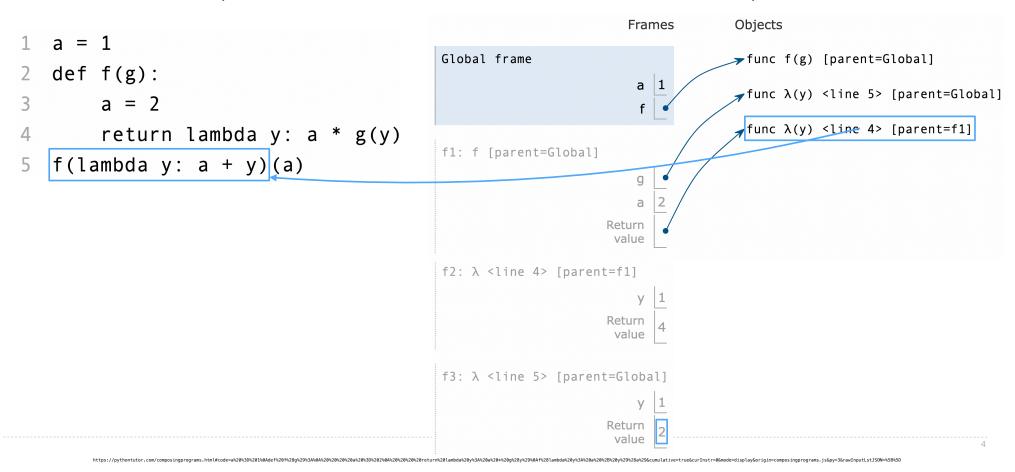


Environment	Diagrams	with	Lambda

```
1  a = 1
2  def f(g):
3     a = 2
4     return lambda y: a * g(y)
5  f(lambda y: a + y)(a)
```


```
1  a = 1
2  def f(g):
3     a = 2
4     return lambda y: a * g(y)
5  f(lambda y: a + y)(a)
```



```
1  a = 1
2  def f(g):
3     a = 2
4     return lambda y: a * g(y)
5  f(lambda y: a + y)(a)
```


	-	1 - 1 -		1
Return	∩ <	ΓΩΤΔ	mar)TC
ı T Glull		laib		ILO

A return statement completes the evaluation of a call expression and provides its value:

A return statement completes the evaluation of a call expression and provides its value:

f(x) for user-defined function f: switch to a new environment; execute f's body

A return statement completes the evaluation of a call expression and provides its value: f(x) for user-defined function f: switch to a new environment; execute f's body return statement within f: switch back to the previous environment; f(x) now has a value

A return statement completes the evaluation of a call expression and provides its value:

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

A return statement completes the evaluation of a call expression and provides its value:

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

"""Print the final digits of N in reverse order until D is found.

>>> end(34567, 5) 7 6 5

A return statement completes the evaluation of a call expression and provides its value:

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

"""Print the final digits of N in reverse order until D is found.

```
>>> end(34567, 5)
7
6
5
"""
while n > 0:
    last, n = n % 10, n // 10
    print(last)
```

A return statement completes the evaluation of a call expression and provides its value:

f(x) for user-defined function f: switch to a new environment; execute f's body

return statement within f: switch back to the previous environment; f(x) now has a value

Only one return statement is ever executed while executing the body of a function

def end(n, d):

"""Print the final digits of N in reverse order until D is found.

```
>>> end(34567, 5)
7
6
5
"""
while n > 0:
    last, n = n % 10, n // 10
    print(last)
    if d == last:
        return None
```

A return statement completes the evaluation of a call expression and provides its value: f(x) for user-defined function f: switch to a new environment; execute f's body **return** statement within f: switch back to the previous environment; f(x) now has a value Only one return statement is ever executed while executing the body of a function

def end(n, d):

"""Print the final digits of N in reverse order until D is found.

```
>>> end(34567, 5)
while n > 0:
  last, n = n \% 10, n // 10
  print(last)
  if d == last:
     return None
                                     (Demo)
```


Let's try to write a function that does the same thing as an if statement.

lf	Statements	and	Call	Ex	pressions

Let's try to write a function that does the same thing as an if statement.

if _____:

else:

	lf	Statements	and	Call	Expression	าร
--	----	-------------------	-----	------	-------------------	----

Let's	try to	o write a	function	that	does	the	same	thing	as	an	if	statement.
-------	--------	-----------	----------	------	------	-----	------	-------	----	----	----	------------

ΤI			

else:

Execution Rule for Conditional Statements:

lf	Statements	and	Call	Ex	pressions

Let's try to write a function that does the same thing as an if statement.

if _____:

else:

Execution Rule for Conditional Statements:

lf	Statements	and	Call	Ex	pressio	ns

Let's try to write a function that does the same thing as an if statement.

if _____:

else:

Execution Rule for Conditional Statements:

Each clause is considered in order.

1. Evaluate the header's expression (if present).

Let's try to write a function that does the same thing as an if statement.

	_
	_
else:	

Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

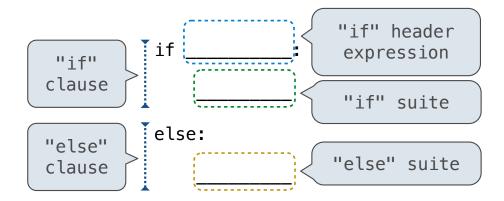
Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.


Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

if_(____, ____)

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

8

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

def if_(c, t, f):

8

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

def if_(c, t, f):

Evaluation Rule for Call Expressions:

8

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

def if_(c, t, f):

Evaluation Rule for Call Expressions:

1. Evaluate the operator and then the operand subexpressions

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- 2. If it is a true value (or an else header), execute the suite & skip the remaining clauses.

def if_(c, t, f):

Evaluation Rule for Call Expressions:

- 1. Evaluate the operator and then the operand subexpressions
- 2. Apply the function that is the value of the operator to the arguments that are the values of the operands

8

Let's try to write a function that does the same thing as an if statement.

Execution Rule for Conditional Statements:

Each clause is considered in order.

- 1. Evaluate the header's expression (if present).
- If it is a true value (or an else header), execute the suite & skip the remaining clauses.

(Demo)

def if_(c, t, f):

Evaluation Rule for Call Expressions:

- 1. Evaluate the operator and then the operand subexpressions
- 2. Apply the function that is the value of the operator to the arguments that are the values of the operands

8

Logical Operators		

To evaluate the expression <left> and <right>:

To evaluate the expression <left> and <right>:

Evaluate the subexpression <left>.

To evaluate the expression <left> and <right>:

- Evaluate the subexpression <left>.
- 2. If the result is a false value ${f v}$, then the expression evaluates to ${f v}$.

To evaluate the expression <left> and <right>:

- Evaluate the subexpression <left>.
- 2. If the result is a false value \mathbf{v} , then the expression evaluates to \mathbf{v} .
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> and <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a false value \mathbf{v} , then the expression evaluates to \mathbf{v} .
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

To evaluate the expression <left> and <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a false value \mathbf{v} , then the expression evaluates to \mathbf{v} .
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

1. Evaluate the subexpression <left>.

To evaluate the expression <left> and <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a false value \mathbf{v} , then the expression evaluates to \mathbf{v} .
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a true value \mathbf{v} , then the expression evaluates to \mathbf{v} .

To evaluate the expression <left> and <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a false value \mathbf{v} , then the expression evaluates to \mathbf{v} .
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a true value \mathbf{v} , then the expression evaluates to \mathbf{v} .
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> and <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a false value ${f v}$, then the expression evaluates to ${f v}$.
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

To evaluate the expression <left> or <right>:

- 1. Evaluate the subexpression <left>.
- 2. If the result is a true value \mathbf{v} , then the expression evaluates to \mathbf{v} .
- 3. Otherwise, the expression evaluates to the value of the subexpression <right>.

(Demo)


```
def square(x):
    return mul(x, x)
```

```
def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
```

```
def square(x):
    return mul(x, x)

    def sum_squares(x, y):
        return square(x) + square(y)

What does sum_squares need to know about square?
```

```
def square(x):
    return mul(x, x)

What does sum_squares need to know about square?
def sum_squares(x, y):
    return square(x) + square(y)
```

•Square takes one argument.

```
def square(x):
    return mul(x, x)

def sum_squares(x, y):
    return square(x) + square(y)
```

What does sum_squares need to know about square?

•Square takes one argument.

Yes

•Square has the intrinsic name square.

```
def square(x):
    return mul(x, x)

    What does sum_squares need to know about square?

•Square takes one argument.

•Square has the intrinsic name square.

No
def sum_squares(x, y):
    return square(x) + square(y)
Yes
•No
```

• Square computes the square of a number.

```
def square(x):
    return mul(x, x)

What does sum_squares need to know about square?

•Square takes one argument.

•Square has the intrinsic name square.

•Square computes the square of a number.

Yes
```

```
def square(x):
    return mul(x, x)

What does sum_squares need to know about square?

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

def sum_squares(x, y):
    return square(x) + square(y)

Yes

• Square takes one argument.
Yes

• Square computes the square by calling mul.
```

```
def square(x):
    return mul(x, x)

    What does sum_squares need to know about square?

• Square takes one argument.

• Square has the intrinsic name square.

• Square computes the square of a number.

• Square computes the square by calling mul.

No
```

```
def square(x):
    return mul(x, x)

    What does sum_squares need to know about square?

Square takes one argument.

Square has the intrinsic name square.

No

Square computes the square of a number.

Square computes the square by calling mul.

No

def square(x):
    return pow(x, 2)
```

```
def square(x):
                                                  def sum_squares(x, y):
                 return mul(x, x)
                                                      return square(x) + square(y)
                     What does sum_squares need to know about square?
                                                                           Yes
Square takes one argument.
•Square has the intrinsic name square.
                                                                           No
• Square computes the square of a number.
                                                                           Yes
• Square computes the square by calling mul.
                                                                           No
            def square(x):
                                                    def square(x):
                return pow(x, 2)
                                                        return mul(x, x-1) + x
```

```
def square(x):
                                                  def sum_squares(x, y):
                 return mul(x, x)
                                                      return square(x) + square(y)
                     What does sum_squares need to know about square?
                                                                          Yes
Square takes one argument.
• Square has the intrinsic name square.
                                                                           No
• Square computes the square of a number.
                                                                          Yes
• Square computes the square by calling mul.
                                                                           No
            def square(x):
                                                    def square(x):
                 return pow(x, 2)
                                                        return mul(x, x-1) + x
                   If the name "square" were bound to a built-in function,
                          sum_squares would still work identically.
```

Choosing Names

Choosing Names

Names typically don't matter for correctness **but**

they matter a lot for composition

Names typically don't matter for correctness

but

they matter a lot for composition

Names should convey the meaning or purpose of the values to which they are bound.

Names typically don't matter for correctness

but

they matter a lot for composition

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Names typically don't matter for correctness

but

they matter a lot for composition

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Names typically don't matter for correctness

but

they matter a lot for composition

From:	To:

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Names typically don't matter for correctness

but

they matter a lot for composition

From:	To:
true_false	rolled_a_one

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Names typically don't matter for correctness

but

they matter a lot for composition

To:
rolled_a_one
dice

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Names typically don't matter for correctness

but

they matter a lot for composition

From:	To:
true_false	rolled_a_one
d	dice
helper	take_turn

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Names typically don't matter for correctness

but

they matter a lot for composition

From:	To:
true_false	rolled_a_one
d	dice
helper	take_turn
my_int	num_rolls

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Names typically don't matter for correctness

but

they matter a lot for composition

From:	To:
true_false	rolled_a_one
d	dice
helper	take_turn
my_int	num_rolls
l, I, O	k, i, m

Names should convey the meaning or purpose of the values to which they are bound.

The type of value bound to the name is best documented in a function's docstring.

Reasons to add a new name

Reasons to add a new name

Repeated compound expressions:

Reasons to add a new name

Repeated compound expressions:

```
if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))
```

Reasons to add a new name

```
Repeated compound expressions:
   if sqrt(square(a) + square(b)) > 1:
        x = x + sqrt(square(a) + square(b))
        hypotenuse = sqrt(square(a) + square(b))
   if hypotenuse > 1:
```

x = x + hypotenuse

Reasons to add a new name

Repeated compound expressions:

```
if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
    x = x + hypotenuse
```

Reasons to add a new name

Repeated compound expressions:

```
if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))
```

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

$$x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)$$

Reasons to add a new name

Repeated compound expressions:

```
if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))
```

```
hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
    x = x + hypotenuse
```

$$x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)$$

discriminant = square(b) -
$$4 * a * c$$

x1 = (-b + sqrt(discriminant)) / (2 * a)

Reasons to add a new name

More Naming Tips

Repeated compound expressions:

```
if sqrt(square(a) + square(b)) > 1:
    x = x + sqrt(square(a) + square(b))
```

hypotenuse = sqrt(square(a) + square(b))
if hypotenuse > 1:
 x = x + hypotenuse

$$x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)$$

discriminant = square(b) -
$$4 * a * c$$

 $x1 = (-b + sqrt(discriminant)) / (2 * a)$

Reasons to add a new name

Repeated compound expressions:

Meaningful parts of complex expressions:

$$x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)$$


```
discriminant = square(b) - 4 * a * c
 \times 1 = (-b + sqrt(discriminant)) / (2 * a)
```

More Naming Tips

Names can be long if they help document your code:

```
average_age = average(age, students)
```

is preferable to

Compute average age of students
aa = avg(a, st)

Reasons to add a new name

Repeated compound expressions:

Meaningful parts of complex expressions:

$$x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)$$

More Naming Tips

Names can be long if they help document your code:

average_age = average(age, students)

is preferable to

Compute average age of students
aa = avg(a, st)

 Names can be short if they represent generic quantities: counts, arbitrary functions, arguments to mathematical operations, etc.

n, k, i - Usually integers

x, y, z - Usually real numbers

f, g, h - Usually functions

Reasons to add a new name

Repeated compound expressions:

hypotenuse = sqrt(square(a) + square(b)) PRACTICAL GUIDELINES if hypotenuse > 1:

x = x + hypotenuse

Meaningful parts of complex expressions:

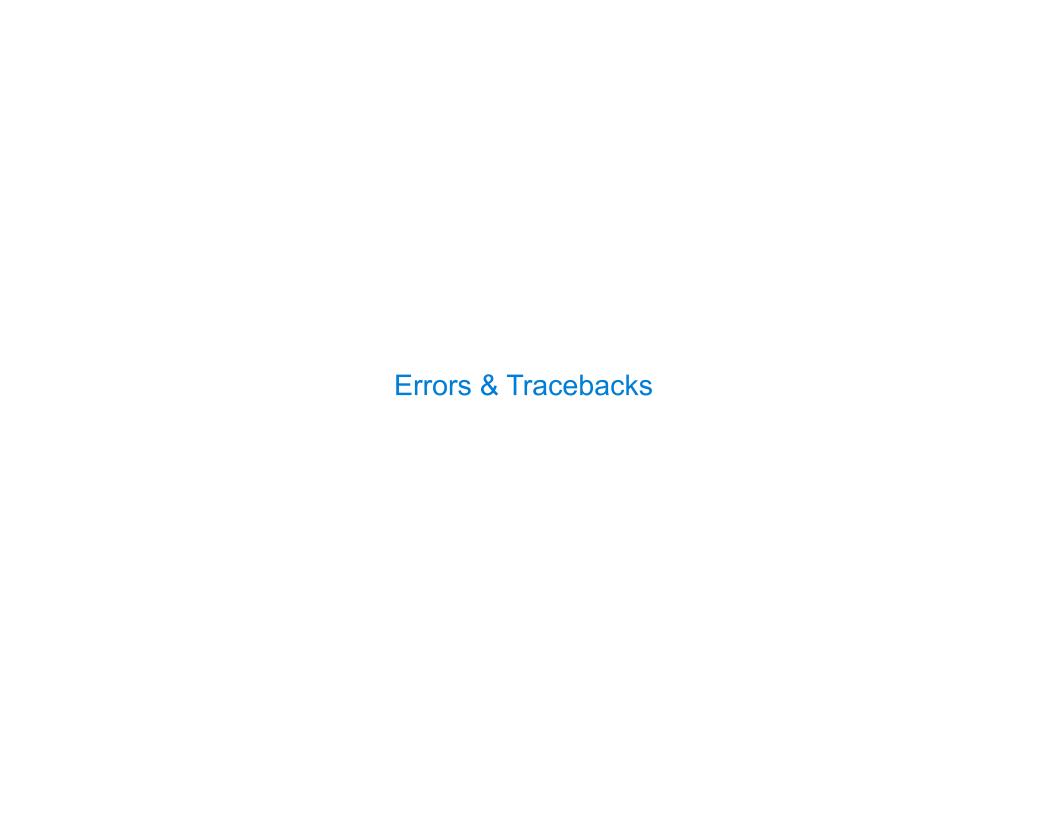
$$x1 = (-b + sqrt(square(b) - 4 * a * c)) / (2 * a)$$

More Naming Tips

 Names can be long if they help document your code:

average_age = average(age, students)

is preferable to


Compute average age of students aa = avg(a, st)

 Names can be short if they represent generic quantities: counts, arbitrary functions, arguments to mathematical operations, etc.

n, k, i - Usually integers

x, y, z - Usually real numbers

f, g, h - Usually functions

Taxonomy of Errors

Syntax Errors Detected by the Python

interpreter (or editor)

before the program executes

Runtime Errors Detected by the Python

interpreter while the program

executes

Logic & Behavior Errors Not detected by the Python

interpreter; what tests are for

Taxonomy of Errors

Syntax Errors

Detected by the Python interpreter (or editor)

before the program executes

Runtime Errors

Detected by the Python

interpreter while the program

executes

Logic & Behavior Errors

Not detected by the Python

interpreter; what tests are for

(Demo)